Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yan Coulombe is active.

Publication


Featured researches published by Yan Coulombe.


Nature Structural & Molecular Biology | 2010

Cooperation of breast cancer proteins PALB2 and piccolo BRCA2 in stimulating homologous recombination

Rémi Buisson; Anne-Marie Dion-Côté; Yan Coulombe; Hélène Launay; Hong Cai; Alicja Z. Stasiak; Andrzej Stasiak; Bing Xia; Jean-Yves Masson

Inherited mutations in human PALB2 are associated with a predisposition to breast and pancreatic cancers. PALB2′s tumor-suppressing effect is thought to be based on its ability to facilitate BRCA2′s function in homologous recombination. However, the biochemical properties of PALB2 are unknown. Here we show that human PALB2 binds DNA, preferentially D-loop structures, and directly interacts with the RAD51 recombinase to stimulate strand invasion, a vital step of homologous recombination. This stimulation occurs through reinforcing biochemical mechanisms, as PALB2 alleviates inhibition by RPA and stabilizes the RAD51 filament. Moreover, PALB2 can function synergistically with a BRCA2 chimera (termed piccolo, or piBRCA2) to further promote strand invasion. Finally, we show that PALB2-deficient cells are sensitive to PARP inhibitors. Our studies provide the first biochemical insights into PALB2′s function with piBRCA2 as a mediator of homologous recombination in DNA double-strand break repair.


Molecular and Cellular Biology | 2008

A Glycine-Arginine Domain in Control of the Human MRE11 DNA Repair Protein

Ugo Déry; Yan Coulombe; Amélie Rodrigue; Andrzej Stasiak; Stéphane Richard; Jean-Yves Masson

ABSTRACT Human MRE11 is a key enzyme in DNA double-strand break repair and genome stability. Human MRE11 bears a glycine-arginine-rich (GAR) motif that is conserved among multicellular eukaryotic species. We investigated how this motif influences MRE11 function. Human MRE11 alone or a complex of MRE11, RAD50, and NBS1 (MRN) was methylated in insect cells, suggesting that this modification is conserved during evolution. We demonstrate that PRMT1 interacts with MRE11 but not with the MRN complex, suggesting that MRE11 arginine methylation occurs prior to the binding of NBS1 and RAD50. Moreover, the first six methylated arginines are essential for the regulation of MRE11 DNA binding and nuclease activity. The inhibition of arginine methylation leads to a reduction in MRE11 and RAD51 focus formation on a unique double-strand break in vivo. Furthermore, the MRE11-methylated GAR domain is sufficient for its targeting to DNA damage foci and colocalization with γ-H2AX. These studies highlight an important role for the GAR domain in regulating MRE11 function at the biochemical and cellular levels during DNA double-strand break repair.


The EMBO Journal | 2009

MRE11–RAD50–NBS1 is a critical regulator of FANCD2 stability and function during DNA double-strand break repair

Céline Roques; Yan Coulombe; Mathieu Delannoy; Julien Vignard; Simona Grossi; Isabelle Brodeur; Amélie Rodrigue; Jean Gautier; Alicja Z. Stasiak; Andrzej Stasiak; Angelos Constantinou; Jean-Yves Masson

Monoubiquitination of the Fanconi anaemia protein FANCD2 is a key event leading to repair of interstrand cross‐links. It was reported earlier that FANCD2 co‐localizes with NBS1. However, the functional connection between FANCD2 and MRE11 is poorly understood. In this study, we show that inhibition of MRE11, NBS1 or RAD50 leads to a destabilization of FANCD2. FANCD2 accumulated from mid‐S to G2 phase within sites containing single‐stranded DNA (ssDNA) intermediates, or at sites of DNA damage, such as those created by restriction endonucleases and laser irradiation. Purified FANCD2, a ring‐like particle by electron microscopy, preferentially bound ssDNA over various DNA substrates. Inhibition of MRE11 nuclease activity by Mirin decreased the number of FANCD2 foci formed in vivo. We propose that FANCD2 binds to ssDNA arising from MRE11‐processed DNA double‐strand breaks. Our data establish MRN as a crucial regulator of FANCD2 stability and function in the DNA damage response.


Journal of Cell Science | 2013

The RAD51 paralogs ensure cellular protection against mitotic defects and aneuploidy.

Amélie Rodrigue; Yan Coulombe; Karine Jacquet; Jean-Phillipe Gagné; Céline Roques; Stéphane Gobeil; Guy G. Poirier; Jean-Yves Masson

Summary The interplay between homologous DNA recombination and mitotic progression is poorly understood. The five RAD51 paralogs (RAD51B, RAD51C, RAD51D, XRCC2 and XRCC3) are key enzymes for DNA double-strand break repair. In our search for specific functions of the various RAD51 paralogs, we found that inhibition of XRCC3 elicits checkpoint defects, while inhibition of RAD51B or RAD51C induces G2/M cell cycle arrest in HeLa cells. Using live-cell microscopy we show that in XRCC3-knockdown cells the spindle assembly checkpoint persists and there is a higher frequency of chromosome misalignments, anaphase bridges, and aneuploidy. We observed centrosome defects in the absence of XRCC3. While RAD51B and RAD51C act early in homologous recombination, XRCC3 functions jointly with GEN1 later in the pathway at the stage of Holliday junction resolution. Our data demonstrate that Holliday junction resolution has critical functions for preventing aberrant mitosis and aneuploidy in mitotic cells.


Cell Research | 2012

The MRE11 GAR motif regulates DNA double-strand break processing and ATR activation

Zhenbao Yu; Gillian Vogel; Yan Coulombe; Danielle Dubeau; Elizabeth Spehalski; Josée Hébert; David O. Ferguson; Jean-Yves Masson; Stéphane Richard

The MRE11/RAD50/NBS1 complex is the primary sensor rapidly recruited to DNA double-strand breaks (DSBs). MRE11 is known to be arginine methylated by PRMT1 within its glycine-arginine-rich (GAR) motif. In this study, we report a mouse knock-in allele of Mre11 that substitutes the arginines with lysines in the GAR motif and generates the MRE11RK protein devoid of methylated arginines. The Mre11RK/RK mice were hypersensitive to γ-irradiation (IR) and the cells from these mice displayed cell cycle checkpoint defects and chromosome instability. Moreover, the Mre11RK/RK MEFs exhibited ATR/CHK1 signaling defects and impairment in the recruitment of RPA and RAD51 to the damaged sites. The MRKRN complex formed and localized to the sites of DNA damage and normally activated the ATM pathway in response to IR. The MRKRN complex exhibited exonuclease and DNA-binding defects in vitro responsible for the impaired DNA end resection and ATR activation observed in vivo in response to IR. Our findings provide genetic evidence for the critical role of the MRE11 GAR motif in DSB repair, and demonstrate a mechanistic link between post-translational modifications at the MRE11 GAR motif and DSB processing, as well as the ATR/CHK1 checkpoint signaling.


Developmental Dynamics | 2006

Stromal Hoxa5 function controls the growth and differentiation of mammary alveolar epithelium

Élisabeth Garin; Margot Lemieux; Yan Coulombe; Gertraud W. Robinson; Lucie Jeannotte

Recent progress has enlightened the involvement of Hox genes in organogenesis. Several Hox genes are expressed in normal and neoplastic mammary glands. Using Hoxa5 mutant mice, we showed that Hoxa5−/− females present nursing defects. Characterization of the Hoxa5−/− mammary gland phenotype reveals changes in proliferation and differentiation of the epithelium of nulliparous and pregnant Hoxa5−/− females that precede the abnormal secretory activity at parturition. These defects likely underlie the incapacity of Hoxa5−/− dams to properly feed their pups. Hoxa5 expression is restricted to the mammary stroma at specific stages of mammary gland development. The loss of Hoxa5 function causes accelerated lobuloalveolar epithelium development, a phenotype that can be rescued upon grafting of mutant mammary epithelium into wild‐type fat pads. Conversely, reciprocal grafting experiments demonstrate that Hoxa5−/− stroma cannot support normal proliferation of wild‐type mammary epithelium. These data establish the essential contribution of Hoxa5 to mammary epithelium instruction by means of mesenchymal–epithelial crosstalk. Developmental Dynamics 235:1858–1871, 2006.


Molecular and Cellular Biology | 2013

Fanconi Anemia Group J Helicase and MRE11 Nuclease Interact to Facilitate the DNA Damage Response

Avvaru N. Suhasini; Joshua A. Sommers; Parameswary A. Muniandy; Yan Coulombe; Sharon B. Cantor; Jean-Yves Masson; Michael M. Seidman; Robert M. Brosh

ABSTRACT FANCJ mutations are linked to Fanconi anemia (FA) and increase breast cancer risk. FANCJ encodes a DNA helicase implicated in homologous recombination (HR) repair of double-strand breaks (DSBs) and interstrand cross-links (ICLs), but its mechanism of action is not well understood. Here we show with live-cell imaging that FANCJ recruitment to laser-induced DSBs but not psoralen-induced ICLs is dependent on nuclease-active MRE11. FANCJ interacts directly with MRE11 and inhibits its exonuclease activity in a specific manner, suggesting that FANCJ regulates the MRE11 nuclease to facilitate DSB processing and appropriate end resection. Cells deficient in FANCJ and MRE11 show increased ionizing radiation (IR) resistance, reduced numbers of γH2AX and RAD51 foci, and elevated numbers of DNA-dependent protein kinase catalytic subunit foci, suggesting that HR is compromised and the nonhomologous end-joining (NHEJ) pathway is elicited to help cells cope with IR-induced strand breaks. Interplay between FANCJ and MRE11 ensures a normal response to IR-induced DSBs, whereas FANCJ involvement in ICL repair is regulated by MLH1 and the FA pathway. Our findings are discussed in light of the current model for HR repair.


PLOS ONE | 2010

Multiple Promoters and Alternative Splicing: Hoxa5 Transcriptional Complexity in the Mouse Embryo

Yan Coulombe; Margot Lemieux; Julie Moreau; Josée Aubin; Milan Joksimovic; Félix-Antoine Bérubé-Simard; Sébastien Tabariès; Olivier Boucherat; François Guillou; Christian Larochelle; Christopher K. Tuggle; Lucie Jeannotte

Background The genomic organization of Hox clusters is fundamental for the precise spatio-temporal regulation and the function of each Hox gene, and hence for correct embryo patterning. Multiple overlapping transcriptional units exist at the Hoxa5 locus reflecting the complexity of Hox clustering: a major form of 1.8 kb corresponding to the two characterized exons of the gene and polyadenylated RNA species of 5.0, 9.5 and 11.0 kb. This transcriptional intricacy raises the question of the involvement of the larger transcripts in Hox function and regulation. Methodology/Principal Findings We have undertaken the molecular characterization of the Hoxa5 larger transcripts. They initiate from two highly conserved distal promoters, one corresponding to the putative Hoxa6 promoter, and a second located nearby Hoxa7. Alternative splicing is also involved in the generation of the different transcripts. No functional polyadenylation sequence was found at the Hoxa6 locus and all larger transcripts use the polyadenylation site of the Hoxa5 gene. Some larger transcripts are potential Hoxa6/Hoxa5 bicistronic units. However, even though all transcripts could produce the genuine 270 a.a. HOXA5 protein, only the 1.8 kb form is translated into the protein, indicative of its essential role in Hoxa5 gene function. The Hoxa6 mutation disrupts the larger transcripts without major phenotypic impact on axial specification in their expression domain. However, Hoxa5-like skeletal anomalies are observed in Hoxa6 mutants and these defects can be explained by the loss of expression of the 1.8 kb transcript. Our data raise the possibility that the larger transcripts may be involved in Hoxa5 gene regulation. Significance Our observation that the Hoxa5 larger transcripts possess a developmentally-regulated expression combined to the increasing sum of data on the role of long noncoding RNAs in transcriptional regulation suggest that the Hoxa5 larger transcripts may participate in the control of Hox gene expression.


Journal of Proteome Research | 2011

Proteome-wide identification of WRN-interacting proteins in untreated and nuclease-treated samples.

Sophie Lachapelle; Jean-Philippe Gagné; Chantal Garand; Myriam Desbiens; Yan Coulombe; Vilhelm A. Bohr; Michael J. Hendzel; Jean-Yves Masson; Guy G. Poirier; Michel Lebel

Werner syndrome (WS) is characterized by the premature onset of several age-associated pathologies. The protein defective in WS patients (WRN) is a helicase/exonuclease involved in DNA repair, replication, telomere maintenance, and transcription. Here, we present the results of a large-scale proteome analysis to determine protein partners of WRN. We expressed fluorescent tagged-WRN (eYFP-WRN) in human 293 embryonic kidney cells and detected interacting proteins by co-immunoprecipitation from cell extract. We identified by mass spectrometry 220 nuclear proteins that complexed with WRN. This number was reduced to 40 when broad-spectrum nucleases were added to the lysate. We consider these 40 proteins as directly interacting with WRN. Some of these proteins have previously been shown to interact with WRN, whereas most are new partners. Among the top 15 hits, we find the new interactors TMPO, HNRNPU, RPS3, RALY, RPS9 DDX21, and HNRNPM. These proteins are likely important components in understanding the function of WRN in preventing premature aging and deserve further investigation. We have confirmed endogenous WRN interaction with endogenous RPS3, a ribosomal protein with endonuclease activities involved in oxidative DNA damage recognition. Our results suggest that the use of nucleases during cell lysis severely restricts interacting protein partners and thus enhances specificity.


Journal of Virology | 2013

Detection of the HIV-1 Minus-Strand-Encoded Antisense Protein and Its Association with Autophagy

Cynthia Torresilla; Émilie Larocque; Sébastien Landry; Marilène Halin; Yan Coulombe; Jean-Yves Masson; Jean-Michel Mesnard; Benoit Barbeau

ABSTRACT HIV-1 proteins are synthesized from a single transcript in an unspliced form or following splicing, but the existence of an antisense protein (ASP) expressed from an antisense polyadenylated transcript has been suggested. Difficulties linked to the detection of this protein in mammalian cells led us to codon optimize its cDNA. Codon-optimized ASP was indeed efficiently detected in various transfected cell lines following flow cytometry and confocal microscopy analyses. Western blot analyses also led to the detection of optimized ASP in transfected cells but also provided evidence of its instability and high multimerization potential. ASP was mainly distributed in the cytoplasm in a punctate manner, which was reminiscent of autophagosomes. In agreement with this observation, a significant increase in ASP-positive cells and loss of its punctate distribution was observed in transfected cells when autophagy was inhibited at early steps. Induction of autophagy was confirmed by Western blot analyses that showed an ASP-mediated increase in levels of LC3b-II and Beclin 1, as well as colocalization and interaction between ASP and LC3. Interestingly, Myc-tagged ASP was detected in the context of proviral DNA following autophagy inhibition with a concomitant increase in the level and punctate distribution of LC3b-II. Finally, 3-methyladenine treatment of transfected or infected U937 cells decreased extracellular p24 levels in wild-type proviral DNA and to a much lesser extent in ASP-mutated proviral DNA. This study provides the first detection of ASP in mammalian cells by Western blotting. ASP-induced autophagy might explain the inherent difficulty in detecting this viral protein and might justify its presumed low abundance in infected cells.

Collaboration


Dive into the Yan Coulombe's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge