Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yan-Ling Liu is active.

Publication


Featured researches published by Yan-Ling Liu.


Angewandte Chemie | 2016

Stretchable Electrochemical Sensor for Real-Time Monitoring of Cells and Tissues

Yan-Ling Liu; Zi-He Jin; Yan‐Hong Liu; Xue-Bo Hu; Yu Qin; Jia-Quan Xu; Cui‐Fang Fan; Wei-Hua Huang

Stretchable electrochemical sensors are conceivably a powerful technique that provides important chemical information to unravel elastic and curvilinear living body. However, no breakthrough was made in stretchable electrochemical device for biological detection. Herein, we synthesized Au nanotubes (NTs) with large aspect ratio to construct an effective stretchable electrochemical sensor. Interlacing network of Au NTs endows the sensor with desirable stability against mechanical deformation, and Au nanostructure provides excellent electrochemical performance and biocompatibility. This allows for the first time, real-time electrochemical monitoring of mechanically sensitive cells on the sensor both in their stretching-free and stretching states as well as sensing of the inner lining of blood vessels. The results demonstrate the great potential of this sensor in electrochemical detection of living body, opening a new window for stretchable electrochemical sensor in biological exploration.


Angewandte Chemie | 2015

Photocatalytically Renewable Micro‐electrochemical Sensor for Real‐Time Monitoring of Cells

Jia-Quan Xu; Yan-Ling Liu; Qian Wang; Huan-Huan Duo; Xin-Wei Zhang; Yu-Tao Li; Wei-Hua Huang

Electrode fouling and passivation is a substantial and inevitable limitation in electrochemical biosensing, and it is a great challenge to efficiently remove the contaminant without changing the surface structure and electrochemical performance. Herein, we propose a versatile and efficient strategy based on photocatalytic cleaning to construct renewable electrochemical sensors for cell analysis. This kind of sensor was fabricated by controllable assembly of reduced graphene oxide (RGO) and TiO2 to form a sandwiching RGO@TiO2 structure, followed by deposition of Au nanoparticles (NPs) onto the RGO shell. The Au NPs-RGO composite shell provides high electrochemical performance. Meanwhile, the encapsulated TiO2 ensures an excellent photocatalytic cleaning property. Application of this renewable microsensor for detection of nitric oxide (NO) release from cells demonstrates the great potential of this strategy in electrode regeneration and biosensing.


Angewandte Chemie | 2014

Real-Time Monitoring of Auxin Vesicular Exocytotic Efflux from Single Plant Protoplasts by Amperometry at Microelectrodes Decorated with Nanowires†

Jun‐Tao Liu; Liangsheng Hu; Yan-Ling Liu; Rongsheng Chen; Zhi Cheng; Shi-Jing Chen; Christian Amatore; Wei-Hua Huang; Kaifu Huo

Recent biochemical results suggest that auxin (IAA) efflux is mediated by a vesicular cycling mechanism, but no direct detection of vesicular IAA release from single plant cells in real-time has been possible up to now. A TiC@C/Pt-QANFA micro-electrochemical sensor has been developed with high sensitivity in detection of IAA, and it allows real-time monitoring and quantification of the quantal release of auxin from single plant protoplast by exocytosis.


Scientific Reports | 2017

A sensitive acupuncture needle microsensor for real-time monitoring of nitric oxide in acupoints of rats

Lina Tang; Yu-Tao Li; Hui Xie; Qing Shu; Fan Yang; Yan-Ling Liu; Feng-Xia Liang; Hua Wang; Wei-Hua Huang; Guo-Jun Zhang

This study reports an acupuncture needle modified with an iron-porphyrin functionalized graphene composite (FGPC) for real-time monitoring of nitric oxide (NO) release in acupoints of rats. A gold film was first deposited to the needle surface to enhance the conductivity. The FGPC was prepared via hydrothermal synthesis, and subsequently applied to the tip surface of acupuncture needle by electrochemical deposition method. The functionalized needle enabled a specific and sensitive detection of NO based on the favorably catalytic properties of iron-porphyrin and the excellent conductivity of graphene. Amperometric data showed that the needle achieved not only a low detection limit down to 3.2 nM in PBS solution, but also a satisfactory selectivity. Interestingly, the functionalized needle could be inserted into the acupoints of rats for real-time monitoring of NO in vivo. It was found that a remarkable response to NO was respectively obtained in different acupoints when stimulated by L-arginine (L-Arg), revealing that the release of NO was detectable in acupoints. We expect this work would showcase the applications of acupuncture needle in detecting some important signaling molecules in vivo, and exploring the mechanism of acupuncture treatment.


Analytical Chemistry | 2017

Conductive Polymer-Coated Carbon Nanotubes To Construct Stretchable and Transparent Electrochemical Sensors

Zi-He Jin; Yan-Ling Liu; Jing-Jing Chen; Si-Liang Cai; Jia-Quan Xu; Wei-Hua Huang

Carbon nanotube (CNT)-based flexible sensors have been intensively developed for physical sensing. However, great challenges remain in fabricating stretchable CNT films with high electrochemical performance for real-time chemical sensing, due to large sheet resistance of CNT film and further resistance increase caused by separation between each CNT during stretching. Herein, we develop a facile and versatile strategy to construct single-walled carbon nanotubes (SWNTs)-based stretchable and transparent electrochemical sensors, by coating and binding each SWNT with conductive polymer. As a polymer with high conductivity, good electrochemical activity, and biocompatibility, poly(3,4-ethylenedioxythiophene) (PEDOT) acting as a superior conductive coating and binder reduces contact resistance and greatly improves the electrochemical performance of SWNTs film. Furthermore, PEDOT protects the SWNTs junctions from separation during stretching, which endows the sensor with highly mechanical compliance and excellent electrochemical performance during big deformation. These unique features allow real-time monitoring of biochemical signals from mechanically stretched cells. This work represents an important step toward construction of a high performance CNTs-based stretchable electrochemical sensor, therefore broadening the way for stretchable sensors in a diversity of biomedical applications.


Analytical Chemistry | 2016

Photochemical Synthesis of Shape-Controlled Nanostructured Gold on Zinc Oxide Nanorods as Photocatalytically Renewable Sensors.

Jia-Quan Xu; Huan-Huan Duo; Yu-Ge Zhang; Xin-Wei Zhang; Wei Fang; Yan-Ling Liu; Aiguo Shen; Jiming Hu; Wei-Hua Huang

Biosensors always suffer from passivation that prevents their reutilization. To address this issue, photocatalytically renewable sensors composed of semiconductor photocatalysts and sensing materials have emerged recently. In this work, we developed a robust and versatile method to construct different kinds of renewable biosensors consisting of ZnO nanorods and nanostructured Au. Via a facile and efficient photochemical reduction, various nanostructured Au was obtained successfully on ZnO nanorods. As-prepared sensors concurrently possess excellent sensing capability and desirable photocatalytic cleaning performance. Experimental results demonstrate that dendritic Au/ZnO composite has the strongest surface-enhanced Raman scattering (SERS) enhancement, and dense Au nanoparticles (NPs)/ZnO composite has the highest electrochemical activity, which was successfully used for electrochemical detection of NO release from cells. Furthermore, both of the SERS and electrochemical sensors can be regenerated efficiently for renewable applications via photodegrading adsorbed probe molecules and biomolecules. Our strategy provides an efficient and versatile method to construct various kinds of highly sensitive renewable sensors and might expand the application of the photocatalytically renewable sensor in the biosensing area.


Analytical Chemistry | 2018

Biomimetic Graphene-Based 3D Scaffold for Long-Term Cell Culture and Real-Time Electrochemical Monitoring

Xue-Bo Hu; Yan-Ling Liu; Wen-Jie Wang; Hai-Wei Zhang; Yu Qin; Shan Guo; Xin-Wei Zhang; Lei Fu; Wei-Hua Huang

Current achievements on electrochemical monitoring of cells are often gained on two-dimensional (2D) substrates, which fail in mimicking the cellular environments and accurately reproducing the cellular functions within a three-dimensional (3D) tissue. In this regard, 3D scaffold concurrently integrated with the function of cell culture and electrochemical sensing is conceivably a promising platform to monitor cells in real time under their in vivo-like 3D microenvironments. However, it is particularly challenging to construct such a multifunctional scaffold platform. Herein, we developed a 3-aminophenylboronic acid (APBA) functionalized graphene foam (GF) network, which combines the biomimetic property of APBA with the mechanical and electrochemical properties of GF. Hence, the GF network can serve as a 3D scaffold to culture cells for a long period with high viability and simultaneously as an electrode for highly sensitive electrochemical sensing. This allows monitoring of gaseous messengers H2S released from the cells cultured on the 3D scaffold in real time. This work represents considerable progress in fabricating 3D cell culture scaffold with electrochemical properties, thereby facilitating future studies of physiologically relevant processes.


Angewandte Chemie | 2017

A Stretchable Electrochemical Sensor for Inducing and Monitoring Cell Mechanotransduction in Real Time

Yan-Ling Liu; Yu Qin; Zi-He Jin; Xue-Bo Hu; Miao-Miao Chen; Rong Liu; Christian Amatore; Wei-Hua Huang

Existing methods offer little direct and real-time information about stretch-triggered biochemical responses during cell mechanotransduction. A novel stretchable electrochemical sensor is reported that takes advantage of a hierarchical percolation network of carbon nanotubes and gold nanotubes (CNT-AuNT). This hybrid nanostructure provides the sensor with excellent time-reproducible mechanical and electrochemical performances while granting very good cellular compatibility, making it perfectly apt to induce and monitor simultaneously transient biochemical signals. This is validated by monitoring stretch-induced transient release of small signaling molecules by both endothelial and epithelial cells cultured on this sensor and submitted to stretching strains of different intensities. This work demonstrates that the hybrid CNT-AuNT platform offers a versatile and highly sensitive way to characterize and quantify short-time mechanotransduction responses.


Analytical Chemistry | 2018

Stretchable and Photocatalytically Renewable Electrochemical Sensor Based on Sandwich Nanonetworks for Real-Time Monitoring of Cells

Yawen Wang; Yan-Ling Liu; Jia-Quan Xu; Yu Qin; Wei-Hua Huang

Stretchable electrochemical (EC) sensors have broad prospects in real-time monitoring of living cells and tissues owing to their excellent elasticity and deformability. However, the redox reaction products and cell secretions are easily adsorbed on the electrode, resulting in sensor fouling and passivation. Herein, we developed a stretchable and photocatalytically renewable EC sensor based on Au nanotubes (NTs) and TiO2 nanowires (NWs) sandwich nanonetworks. The external Au NTs are used for EC sensing, and internal TiO2 NWs provide photocatalytic performance to degrade contaminants, which endows the sensor with excellent EC performance, high photocatalytic activity, and favorable mechanical tensile property. This allows highly sensitive recycling monitoring of NO released from endothelial cells and 5-HT released from mast cells under their stretching states in real time, therefore providing a promising tool to unravel elastic and mechanically sensitive cells, tissues, and organs.


Analytical Chemistry | 2018

Flexible Electrochemical Urea Sensor Based on Surface Molecularly Imprinted Nanotubes for Detection of Human Sweat

Yan-Ling Liu; Rong Liu; Yu Qin; Quan-Fa Qiu; Zhen Chen; Shi-Bo Cheng; Wei-Hua Huang

Flexible electrochemical (EC) sensors have shown great prospect in epidermal detection for personal healthcare and disease diagnosis. However, no reports have been seen in flexible device for urea analysis in body fluids. Herein, we developed a flexible wearable EC sensor based on surface molecularly imprinted nanotubes for noninvasive urea monitoring with high selectivity in human sweat. The flexible EC sensor was prepared by electropolymerization of 3,4-ethylenedioxythiophene (EDOT) monomer on the hierarchical network of carbon nanotubes (CNTs) and gold nanotubes (Au NTs) to imprint template molecule urea. This sensor exhibited a good linear response toward physiologically relevant urea levels with negligible interferences from common coexisting species. Bending test revealed that this sensor possessed excellent mechanical tolerance and its EC performance was almost not affected by bending deformation. On-body results of human subjects showed that the flexible platform could distinctly respond to the urea levels in volunteers sweat after aerobic exercise. The new flexible epidermal EC sensor can provide useful insights into noninvasive monitoring of urea levels in various biofluids, which is promising in the clinical diagnosis of diverse biomedical applications.

Collaboration


Dive into the Yan-Ling Liu's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge