Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yana Cen is active.

Publication


Featured researches published by Yana Cen.


Developmental Cell | 2008

Glucose Restriction Inhibits Skeletal Myoblast Differentiation by Activating SIRT1 through AMPK-Mediated Regulation of Nampt

Marcella Fulco; Yana Cen; Po Zhao; Eric P. Hoffman; Michael W. McBurney; Anthony A. Sauve; Vittorio Sartorelli

It is intuitive to speculate that nutrient availability may influence differentiation of mammalian cells. Nonetheless, a comprehensive complement of the molecular determinants involved in this process has not been elucidated yet. Here, we have investigated how nutrients (glucose) affect skeletal myogenesis. Glucose restriction (GR) impaired differentiation of skeletal myoblasts and was associated with activation of the AMP-activated protein kinase (AMPK). Activated AMPK was required to promote GR-induced transcription of the NAD+ biosynthetic enzyme Nampt. Indeed, GR augmented the Nampt activity, which consequently modified the intracellular [NAD+]:[NADH] ratio and nicotinamide levels, and mediated inhibition of skeletal myogenesis. Skeletal myoblasts derived from SIRT1+/- heterozygous mice were resistant to the effects of either GR or AMPK activation. These experiments reveal that AMPK, Nampt, and SIRT1 are the molecular components of a functional signaling pathway that allows skeletal muscle cells to sense and react to nutrient availability.


Cell Metabolism | 2012

The NAD+ Precursor Nicotinamide Riboside Enhances Oxidative Metabolism and Protects against High-Fat Diet-Induced Obesity

Carles Cantó; Riekelt H. Houtkooper; Eija Pirinen; Dou Yeon Youn; Maaike H. Oosterveer; Yana Cen; Pablo J. Fernandez-Marcos; Hiroyasu Yamamoto; Penelope Andreux; Philippe Cettour-Rose; Karl Gademann; Chris Rinsch; Kristina Schoonjans; Anthony A. Sauve; Johan Auwerx

As NAD(+) is a rate-limiting cosubstrate for the sirtuin enzymes, its modulation is emerging as a valuable tool to regulate sirtuin function and, consequently, oxidative metabolism. In line with this premise, decreased activity of PARP-1 or CD38-both NAD(+) consumers-increases NAD(+) bioavailability, resulting in SIRT1 activation and protection against metabolic disease. Here we evaluated whether similar effects could be achieved by increasing the supply of nicotinamide riboside (NR), a recently described natural NAD(+) precursor with the ability to increase NAD(+) levels, Sir2-dependent gene silencing, and replicative life span in yeast. We show that NR supplementation in mammalian cells and mouse tissues increases NAD(+) levels and activates SIRT1 and SIRT3, culminating in enhanced oxidative metabolism and protection against high-fat diet-induced metabolic abnormalities. Consequently, our results indicate that the natural vitamin NR could be used as a nutritional supplement to ameliorate metabolic and age-related disorders characterized by defective mitochondrial function.


Cell Metabolism | 2011

PARP-1 Inhibition Increases Mitochondrial Metabolism through SIRT1 Activation

Péter Bai; Carles Cantó; Hugues Oudart; Attila Brunyanszki; Yana Cen; Charles Thomas; Hiroyasu Yamamoto; Aline Huber; Borbála Kiss; Riekelt H. Houtkooper; Kristina Schoonjans; Valérie Schreiber; Anthony A. Sauve; Josiane Ménissier-de Murcia; Johan Auwerx

SIRT1 regulates energy homeostasis by controlling the acetylation status and activity of a number of enzymes and transcriptional regulators. The fact that NAD(+) levels control SIRT1 activity confers a hypothetical basis for the design of new strategies to activate SIRT1 by increasing NAD(+) availability. Here we show that the deletion of the poly(ADP-ribose) polymerase-1 (PARP-1) gene, encoding a major NAD(+)-consuming enzyme, increases NAD(+) content and SIRT1 activity in brown adipose tissue and muscle. PARP-1(-/-) mice phenocopied many aspects of SIRT1 activation, such as a higher mitochondrial content, increased energy expenditure, and protection against metabolic disease. Also, the pharmacologic inhibition of PARP in vitro and in vivo increased NAD(+) content and SIRT1 activity and enhanced oxidative metabolism. These data show how PARP-1 inhibition has strong metabolic implications through the modulation of SIRT1 activity, a property that could be useful in the management not only of metabolic diseases, but also of cancer.


Nature | 2014

Nicotinamide N-methyltransferase knockdown protects against diet-induced obesity

Daniel Kraus; Qin Yang; Dong Kong; Alexander S. Banks; Lin Zhang; Joseph T. Rodgers; Eija Pirinen; Thomas Pulinilkunnil; Fengying Gong; Ya Chin Wang; Yana Cen; Anthony A. Sauve; John M. Asara; Odile D. Peroni; Brett P. Monia; Sanjay Bhanot; Leena Alhonen; Pere Puigserver; Barbara B. Kahn

In obesity and type 2 diabetes, Glut4 glucose transporter expression is decreased selectively in adipocytes. Adipose-specific knockout or overexpression of Glut4 alters systemic insulin sensitivity. Here we show, using DNA array analyses, that nicotinamide N-methyltransferase (Nnmt) is the most strongly reciprocally regulated gene when comparing gene expression in white adipose tissue (WAT) from adipose-specific Glut4-knockout or adipose-specific Glut4-overexpressing mice with their respective controls. NNMT methylates nicotinamide (vitamin B3) using S-adenosylmethionine (SAM) as a methyl donor. Nicotinamide is a precursor of NAD+, an important cofactor linking cellular redox states with energy metabolism. SAM provides propylamine for polyamine biosynthesis and donates a methyl group for histone methylation. Polyamine flux including synthesis, catabolism and excretion, is controlled by the rate-limiting enzymes ornithine decarboxylase (ODC) and spermidine–spermine N1-acetyltransferase (SSAT; encoded by Sat1) and by polyamine oxidase (PAO), and has a major role in energy metabolism. We report that NNMT expression is increased in WAT and liver of obese and diabetic mice. Nnmt knockdown in WAT and liver protects against diet-induced obesity by augmenting cellular energy expenditure. NNMT inhibition increases adipose SAM and NAD+ levels and upregulates ODC and SSAT activity as well as expression, owing to the effects of NNMT on histone H3 lysine 4 methylation in adipose tissue. Direct evidence for increased polyamine flux resulting from NNMT inhibition includes elevated urinary excretion and adipocyte secretion of diacetylspermine, a product of polyamine metabolism. NNMT inhibition in adipocytes increases oxygen consumption in an ODC-, SSAT- and PAO-dependent manner. Thus, NNMT is a novel regulator of histone methylation, polyamine flux and NAD+-dependent SIRT1 signalling, and is a unique and attractive target for treating obesity and type 2 diabetes.


The EMBO Journal | 2014

SIRT2 induces the checkpoint kinase BubR1 to increase lifespan

Brian J. North; Michael A. Rosenberg; Karthik B. Jeganathan; Angela Hafner; Shaday Michan; Jing Dai; Darren J. Baker; Yana Cen; Lindsay E. Wu; Anthony A. Sauve; Jan M. van Deursen; Anthony Rosenzweig; David A. Sinclair

Mice overexpressing the mitotic checkpoint kinase gene BubR1 live longer, whereas mice hypomorphic for BubR1 (BubR1H/H) live shorter and show signs of accelerated aging. As wild‐type mice age, BubR1 levels decline in many tissues, a process that is proposed to underlie normal aging and age‐related diseases. Understanding why BubR1 declines with age and how to slow this process is therefore of considerable interest. The sirtuins (SIRT1‐7) are a family of NAD+‐dependent deacetylases that can delay age‐related diseases. Here, we show that the loss of BubR1 levels with age is due to a decline in NAD+ and the ability of SIRT2 to maintain lysine‐668 of BubR1 in a deacetylated state, which is counteracted by the acetyltransferase CBP. Overexpression of SIRT2 or treatment of mice with the NAD+ precursor nicotinamide mononucleotide (NMN) increases BubR1 abundance in vivo. Overexpression of SIRT2 in BubR1H/H animals increases median lifespan, with a greater effect in male mice. Together, these data indicate that further exploration of the potential of SIRT2 and NAD+ to delay diseases of aging in mammals is warranted.


Journal of Biological Chemistry | 2009

Global Analysis of Transcriptional Regulation by Poly(ADP-ribose) Polymerase-1 and Poly(ADP-ribose) Glycohydrolase in MCF-7 Human Breast Cancer Cells

Kristine M. Frizzell; Matthew J. Gamble; Jhoanna G. Berrocal; Tong Zhang; Raga Krishnakumar; Yana Cen; Anthony A. Sauve; W. Lee Kraus

Poly(ADP-ribose) polymerase-1 (PARP-1) and poly(ADP-ribose) glycohydrolase (PARG) are enzymes that modify target proteins by the addition and removal, respectively, of ADP-ribose polymers. Although a role for PARP-1 in gene regulation has been well established, the role of PARG is less clear. To investigate how PARP-1 and PARG coordinately regulate global patterns of gene expression, we used short hairpin RNAs to stably knock down PARP-1 or PARG in MCF-7 cells followed by expression microarray analyses. Correlation analyses showed that the majority of genes affected by the knockdown of one factor were similarly affected by the knockdown of the other factor. The most robustly regulated common genes were enriched for stress-response and metabolic functions. In chromatin immunoprecipitation assays, PARP-1 and PARG localized to the promoters of positively and negatively regulated target genes. The levels of chromatin-bound PARG at a given promoter generally correlated with the levels of PARP-1 across the subset of promoters tested. For about half of the genes tested, the binding of PARP-1 at the promoter was dependent on the binding of PARG. Experiments using stable re-expression of short hairpin RNA-resistant catalytic mutants showed that PARP-1 and PARG enzymatic activities are required for some, but not all, target genes. Collectively, our results indicate that PARP-1 and PARG, nuclear enzymes with opposing enzymatic activities, localize to target promoters and act in a similar, rather than antagonistic, manner to regulate gene expression.


Biochimica et Biophysica Acta | 2010

SIRTUINS INHIBITORS: THE APPROACH TO AFFINITY AND SELECTIVITY

Yana Cen

Accumulating evidence has indicated the importance of sirtuins (class III histone deacetylases) in various biological processes. Their potential roles in metabolic and neurodegenerative diseases have encouraged scientists to seek potent and selective sirtuin inhibitors to investigate their biological functions with a view to eventual new therapeutic treatments. This article surveys current knowledge of sirtuin inhibitors including those discovered via high-throughput screening (HST) or via mechanism-based drug design from synthetic or natural sources. Their inhibitory affinity, selectivities, and possible inhibition mechanisms are discussed.


Molecular and Cellular Biology | 2013

SIRT4 represses peroxisome proliferator-activated receptor α activity to suppress hepatic fat oxidation.

Gaëlle Laurent; Vincent C.J. de Boer; Lydia W.S. Finley; Meredith Sweeney; Hong Lu; Thaddeus T. Schug; Yana Cen; Seung Min Jeong; Xiaoling Li; Anthony A. Sauve; Marcia C. Haigis

ABSTRACT Sirtuins are a family of protein deacetylases, deacylases, and ADP-ribosyltransferases that regulate life span, control the onset of numerous age-associated diseases, and mediate metabolic homeostasis. We have uncovered a novel role for the mitochondrial sirtuin SIRT4 in the regulation of hepatic lipid metabolism during changes in nutrient availability. We show that SIRT4 levels decrease in the liver during fasting and that SIRT4 null mice display increased expression of hepatic peroxisome proliferator-activated receptor α (PPARα) target genes associated with fatty acid catabolism. Accordingly, primary hepatocytes from SIRT4 knockout (KO) mice exhibit higher rates of fatty acid oxidation than wild-type hepatocytes, and SIRT4 overexpression decreases fatty acid oxidation rates. The enhanced fatty acid oxidation observed in SIRT4 KO hepatocytes requires functional SIRT1, demonstrating a clear cross talk between mitochondrial and nuclear sirtuins. Thus, SIRT4 is a new component of mitochondrial signaling in the liver and functions as an important regulator of lipid metabolism.


Biochemistry | 2008

Plasmodium falciparum Sir2 is an NAD+-dependent deacetylase and an acetyllysine-dependent and acetyllysine-independent NAD+ glycohydrolase

Jarrod B. French; Yana Cen; Anthony A. Sauve

Sirtuins are NAD (+)-dependent enzymes that deacetylate a variety of cellular proteins and in some cases catalyze protein ADP-ribosyl transfer. The catalytic mechanism of deacetylation is proposed to involve an ADPR-peptidylimidate, whereas the mechanism of ADP-ribosyl transfer to proteins is undetermined. Herein we characterize a Plasmodium falciparum sirtuin that catalyzes deacetylation of histone peptide sequences. Interestingly, the enzyme can also hydrolyze NAD (+). Two mechanisms of hydrolysis were identified and characterized. One is independent of acetyllysine substrate and produces alpha-stereochemistry as established by reaction of methanol which forms alpha-1- O-methyl-ADPR. This reaction is insensitive to nicotinamide inhibition. The second solvolytic mechanism is dependent on acetylated peptide and is proposed to involve the imidate to generate beta-stereochemistry. Stereochemistry was established by isolation of beta-1- O-methyl-ADPR when methanol was added as a cosolvent. This solvolytic reaction was inhibited by nicotinamide, suggesting that nicotinamide and solvent compete for the imidate. These findings establish new reactions of wildtype sirtuins and suggest possible mechanisms for ADP-ribosylation to proteins. These findings also illustrate the potential utility of nicotinamide as a probe for mechanisms of sirtuin-catalyzed ADP-ribosyl transfer.


Biochemistry | 2010

Characterization of nicotinamidases: steady state kinetic parameters, classwide inhibition by nicotinaldehydes, and catalytic mechanism.

Jarrod B. French; Yana Cen; Tracy L. Vrablik; Ping Xu; Eleanor Allen; Wendy Hanna-Rose; Anthony A. Sauve

Nicotinamidases are metabolic enzymes that hydrolyze nicotinamide to nicotinic acid. These enzymes are widely distributed across biology, with examples found encoded in the genomes of Mycobacteria, Archaea, Eubacteria, Protozoa, yeast, and invertebrates, but there are none found in mammals. Although recent structural work has improved our understanding of these enzymes, their catalytic mechanism is still not well understood. Recent data show that nicotinamidases are required for the growth and virulence of several pathogenic microbes. The enzymes of Saccharomyces cerevisiae, Drosophila melanogaster, and Caenorhabditis elegans regulate life span in their respective organisms, consistent with proposed roles in the regulation of NAD(+) metabolism and organismal aging. In this work, the steady state kinetic parameters of nicotinamidase enzymes from C. elegans, Sa. cerevisiae, Streptococcus pneumoniae (a pathogen responsible for human pneumonia), Borrelia burgdorferi (the pathogen that causes Lyme disease), and Plasmodium falciparum (responsible for most human malaria) are reported. Nicotinamidases are generally efficient catalysts with steady state k(cat) values typically exceeding 1 s(-1). The K(m) values for nicotinamide are low and in the range of 2 -110 μM. Nicotinaldehyde was determined to be a potent competitive inhibitor of these enzymes, binding in the low micromolar to low nanomolar range for all nicotinamidases tested. A variety of nicotinaldehyde derivatives were synthesized and evaluated as inhibitors in kinetic assays. Inhibitions are consistent with reaction of the universally conserved catalytic Cys on each enzyme with the aldehyde carbonyl carbon to form a thiohemiacetal complex that is stabilized by a conserved oxyanion hole. The S. pneumoniae nicotinamidase can catalyze exchange of (18)O into the carboxy oxygens of nicotinic acid with H(2)(18)O. The collected data, along with kinetic analysis of several mutants, allowed us to propose a catalytic mechanism that explains nicotinamidase and nicotinic acid (18)O exchange chemistry for the S. pneumoniae enzyme involving key catalytic residues, a catalytic transition metal ion, and the intermediacy of a thioester intermediate.

Collaboration


Dive into the Yana Cen's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hiroyasu Yamamoto

École Polytechnique Fédérale de Lausanne

View shared research outputs
Top Co-Authors

Avatar

Johan Auwerx

École Polytechnique Fédérale de Lausanne

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Attila Brunyanszki

University of Texas Medical Branch

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge