Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yang-Fang Chen is active.

Publication


Featured researches published by Yang-Fang Chen.


Journal of Applied Physics | 2004

Origin of defect emission identified by polarized luminescence from aligned ZnO nanorods

N. E. Hsu; W. K. Hung; Yang-Fang Chen

It is found that both of the band-edge and defect emission from aligned ZnO nanorods are strongly polarized, and the intensities vary with the polarization angle by the relation of a square cosine function. The intensity of the UV emission has its maximum along the c axis of a ZnO crystal. However, the intensity of the green emission is minimum in this direction. Namely, the two intensity curves are 90° out of phase. This unique characteristic of the polarization provides useful information to identify the fact that the green emission mostly occurs on the surface defects of the nanorods. This result is consistent with the currently accepted model that the green emission arises from the recombination between holes trapped at the surface defects and electrons trapped at the oxygen vacancy.


Applied Physics Letters | 1998

Crystalline silicon carbon nitride: A wide band gap semiconductor

L. C. Chen; C. K. Chen; S. L. Wei; D. M. Bhusari; Kuei-Hsien Chen; Yang-Fang Chen; Y. C. Jong; Yu-Ru Huang

Crystalline thin films of SiCN have been grown by microwave plasma-enhanced chemical vapor deposition using H2, CH4, N2, and SiH4 gases. The ternary compound (C;Si)xNy exhibits a hexagonal structure and consists of a network wherein the Si and C are substitutional elements. While the N content of the compound is about 35–40 at. %, the extent of Si substitution varies and can be as low as 10 at. %. Optical properties of the SiCN compounds have been studied by photoluminescence (PL), piezoreflectance (PzR), and photothermal deflection (PDS) spectroscopies. From the PzR measurement, we determine the direct band gap of the new crystals to be around 3.8 eV at room temperature. PDS measurement shows two absorption features with the first peak at around 3.2 eV which is related to an indirect band gap. The second PDS peak occurred around 3.8 eV and is quite consistent with the direct band gap determined by PzR. From the PL measurement, it is also found that the SiCN compounds have a near band edge emission center...


Journal of Materials Chemistry | 2008

Enhancing photoluminescence quenching and photoelectric properties of CdSe quantum dots with hole accepting ligands

I-Shuo Liu; Hsi-Hsing Lo; Chih-Tao Chien; Yun-Yue Lin; Chun-Wei Chen; Yang-Fang Chen; Wei-Fang Su; Sz-Chian Liou

CdSe quantum dots have been encapped with aromatic ligands: α-toluenethiol, thiophenol, and p-hydroxythiophenol to enhance the photoluminescence (PL) quenching and photoelectric properties of the quantum dots. The aromatic ligand capped CdSe quantum dots are prepared through ligand exchange with trioctylphosphine oxide (TOPO) capped CdSe quantum dots. The XPS surface chemistry analysis and elemental analysis has confirmed the success of ligand exchange from TOPO to aromatic ligands. Both XRD and HRTEM-SAED studies indicate the crystalline structure of CdSe quantum dots not only remains but is also improved by the ligand exchange of TOPO with thiol molecules. Time resolved PL decay measurements indicate thiophenol and p-hydroxythiophenol ligands effectively quench the emission and have much shorter PL lifetimes than that of TOPO and that of α-toluenethiol. Thus, both thiophenol and p-hydroxythiophenol can act as an effective acceptor for photogenerated holes through aromatic π-electrons. Thiophenol also exhibits good charge transport behavior showing a 10-fold increase in short circuit current density (Isc) as compared with TOPO in the photocurrent study of fabricated photovoltaic devices.


Nanotechnology | 2006

Giant enhancement of bandgap emission of ZnO nanorods by platinum nanoparticles

Jian Ming Lin; Hsia Yu Lin; Chung Liang Cheng; Yang-Fang Chen

By the formation of ZnO and Pt nanocomposites, it is found that the bandgap emission can be greatly enhanced, while the defect emission is suppressed to the noise level. The photoluminescence intensity ratio between the bandgap and defect emission can be improved by up to 103 times. The underlying mechanism behind enhancement of the bandgap emission and quenching of the defect emission is a combination of the energy transfer between defects and surface plasmon resonance in Pt nanoparticles, as well as electron–hole pair generation and recombination in the ZnO nanorods. Our results will be very useful to manufacturers of highly efficient optoelectronic devices.


Optics Express | 2006

Enhancement of band gap emission stimulated by defect loss.

H. Y. Lin; Chung-Liang Cheng; Yi-Hong Chou; Lynn L.H. Huang; Yang-Fang Chen; K. T. Tsen

Defect radiation has been always considered as the most important loss for an emitter based on band gap emission. Here, we propose a novel approach which goes against this conventional wisdom. Based on the resonance effect between the surface plasmon of metal nanoparticles and defect emission, it is possible to convert the useless defect radiation to the useful excitonic emission with a giant enhancement factor. Through the transfer of the energetic electrons excited by surface plasmon from metal nanoparticles to the conduction band of the emitter, the band gap emission can be greatly enhanced, while the defect emission can be suppressed to noise level.


Applied Physics Letters | 2004

Effective mass of InN epilayers

S. P. Fu; Yang-Fang Chen

We report on the study of plasma edge absorption of InN epilayers with free electron concentration ranging from 3.5×1017to5×1019cm−3. Together with the previously reported data, the wide range variation of effective mass cannot be explained by Kane’s two band k∙p model alone. We show that the combination of Kane’s two band k∙p model, band renormalized effect due to electron–electron interaction, and electron–ionized impurity interaction can provide an excellent description. The effective mass of the free electron at the bottom of the conduction band was found to be m*=0.05m0, which is in good agreement with the very recent theoretical calculation.


Applied Physics Letters | 2006

Electrically controlled surface plasmon resonance frequency of gold nanorods

Kung-Ching Chu; Chih-Yu Chao; Yang-Fang Chen; Y.-C. Wu; Chia-Chun Chen

We have presented the voltage-controlled tuning of plasmonic response of absorption spectra of gold nanorods in liquid crystals. We observe that gold nanorods can be aligned along the rubbed polyimide substrate before applying external voltage. It is found that the transverse mode of gold nanorods shows a blueshift or a redshift when rotating the analyzer parallel or perpendicular to the rubbing direction, respectively, while all longitudinal modes display a redshift behavior. This work offers an easy way to tune the transverse and longitudinal modes of gold nanorods simultaneously, which makes it feasible to establish the color tunable devices.


ACS Nano | 2011

Nitrogen-Doped Anatase Nanofibers Decorated with Noble Metal Nanoparticles for Photocatalytic Production of Hydrogen

Ming-Chung Wu; Jussi Hiltunen; András Sápi; Anna Avila; William Larsson; Hsueh-Chung Liao; Mika Huuhtanen; Géza Tóth; Andrey Shchukarev; Noémi Laufer; Ákos Kukovecz; Zoltán Kónya; Jyri-Pekka Mikkola; Riitta L. Keiski; Wei-Fang Su; Yang-Fang Chen; Heli Jantunen; Pulickel M. Ajayan; Robert Vajtai; Krisztian Kordas

We report the synthesis of N-doped TiO(2) nanofibers and high photocatalytic efficiency in generating hydrogen from ethanol-water mixtures under UV-A and UV-B irradiation. Titanate nanofibers synthesized by hydrothermal method are annealed in air and/or ammonia to achieve N-doped anatase fibers. Depending on the synthesis route, either interstitial N atoms or new N-Ti bonds appear in the lattice, resulting in slight lattice expansion as shown by XPS and HR-TEM analysis, respectively. These nanofibers were then used as support for Pd and Pt nanoparticles deposited with wet impregnation followed by calcination and reduction. In the hydrogen generation tests, the N-doped samples were clearly outperforming their undoped counterparts, showing remarkable efficiency not only under UV-B but also with UV-A illumination. When 100 mg of catalyst (N-doped TiO(2) nanofiber decorated with Pt nanoparticles) was applied to 1 L of water-ethanol mixture, the H(2) evolution rates were as high as 700 μmol/h (UV-A) and 2250 μmol/h (UV-B) corresponding to photo energy conversion percentages of ∼3.6 and ∼12.3%, respectively.


Journal of Applied Physics | 1997

TEMPERATURE DEPENDENCE OF PHOTOLUMINESCENCE SPECTRA IN INAS/GAAS QUANTUM DOT SUPERLATTICES WITH LARGE THICKNESSES

Y. T. Dai; J. C. Fan; Yang-Fang Chen; Ray-Ming Lin; S. C. Lee; Hung-I Lin

In this report, we investigate the thermal relaxation of the photoluminescence (PL) in InAs/GaAs quantum dot superlattices with large thicknesses that have two to more than three times the critical thickness for spontaneous island formation. It is found that the linewidth first decreases and then increases with increasing temperature. In addition to thermionic emission, we suggest that carrier repopulation among quantum dots plays an important role in the PL quenching. The temperature dependence of PL peak energy following a Varshni relation was attributed to the dilation of lattice and electron-lattice interaction. The emission intensity quenches rapidly when the temperature rises to around 60 K, indicating the existence of defect-related centers in the vicinity of InAs/GaAs interfaces. In addition, we performed the measurement of the activation energy of PL quenching at different emission energy. We found that the loss mechanism of PL quenching based on the activation of electron-hole pairs from quantum...


Journal of the American Chemical Society | 2011

Quantitative Nanoorganized Structural Evolution for a High Efficiency Bulk Heterojunction Polymer Solar Cell

Hsueh-Chung Liao; Cheng-Si Tsao; Tsung-Han Lin; Chih-Min Chuang; Charn-Ying Chen; U-Ser Jeng; Chiu-Hun Su; Yang-Fang Chen; Wei-Fang Su

We have developed an improved small-angle X-ray scattering (SAXS) model and analysis methodology to quantitatively evaluate the nanostructures of a blend system. This method has been applied to resolve the various structures of self-organized poly(3-hexylthiophene)/C61-butyric acid methyl ester (P3HT/PCBM) thin active layer in a solar cell from the studies of both grazing-incidence small-angle X-ray scattering (GISAXS) and grazing-incidence X-ray diffraction (GIXRD). Tuning the various length scales of PCBM-related structures by a different annealing process can provide a flexible approach and better understanding to enhance the power conversion of the P3HT/PCBM solar cell. The quantitative structural characterization by this method includes (1) the mean size, volume fraction, and size distribution of aggregated PCBM clusters, (2) the specific interface area between PCBM and P3HT, (3) the local cluster agglomeration, and (4) the correlation length of the PCBM molecular network within the P3HT phase. The above terms are correlated well with the device performance. The various structural evolutions and transformations (growth and dissolution) between PCBM and P3HT with the variation of annealing history are demonstrated here. This work established a useful SAXS approach to present insight into the modeling of the morphology of P3HT/PCBM film. In situ GISAXS measurements were also conducted to provide informative details of thermal behavior and temporal evolution of PCBM-related structures during phase separation. The results of this investigation significantly extend the current knowledge of the relationship of bulk heterojunction morphology to device performance.

Collaboration


Dive into the Yang-Fang Chen's collaboration.

Top Co-Authors

Avatar

Tai-Yuan Lin

National Taiwan Ocean University

View shared research outputs
Top Co-Authors

Avatar

Wei-Fang Su

National Taiwan University

View shared research outputs
Top Co-Authors

Avatar

Chi-Te Liang

National Taiwan University

View shared research outputs
Top Co-Authors

Avatar

T. T. Chen

National Taiwan University

View shared research outputs
Top Co-Authors

Avatar

Li-Chyong Chen

National Taiwan University

View shared research outputs
Top Co-Authors

Avatar

Chen-Yuan Dong

National Taiwan University

View shared research outputs
Top Co-Authors

Avatar

Yu-Ming Liao

National Taiwan University

View shared research outputs
Top Co-Authors

Avatar

Golam Haider

National Taiwan University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chung-Liang Cheng

National Taiwan University

View shared research outputs
Researchain Logo
Decentralizing Knowledge