Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yanhong Zhao is active.

Publication


Featured researches published by Yanhong Zhao.


Nature | 2016

Distinct features of H3K4me3 and H3K27me3 chromatin domains in pre-implantation embryos.

Xiaoyu Liu; Chenfei Wang; Wenqiang Liu; Chong Li; Xiaochen Kou; Jiayu Chen; Yanhong Zhao; Haibo Gao; Hong Wang; Yong Zhang; Yawei Gao; Shaorong Gao

Histone modifications have critical roles in regulating the expression of developmental genes during embryo development in mammals. However, genome-wide analyses of histone modifications in pre-implantation embryos have been impeded by the scarcity of the required materials. Here, by using a small-scale chromatin immunoprecipitation followed by sequencing (ChIP–seq) method, we map the genome-wide profiles of histone H3 lysine 4 trimethylation (H3K4me3) and histone H3 lysine 27 trimethylation (H3K27me3), which are associated with gene activation and repression, respectively, in mouse pre-implantation embryos. We find that the re-establishment of H3K4me3, especially on promoter regions, occurs much more rapidly than that of H3K27me3 following fertilization, which is consistent with the major wave of zygotic genome activation at the two-cell stage. Furthermore, H3K4me3 and H3K27me3 possess distinct features of sequence preference and dynamics in pre-implantation embryos. Although H3K4me3 modifications occur consistently at transcription start sites, the breadth of the H3K4me3 domain is a highly dynamic feature. Notably, the broad H3K4me3 domain (wider than 5 kb) is associated with higher transcription activity and cell identity not only in pre-implantation development but also in the process of deriving embryonic stem cells from the inner cell mass and trophoblast stem cells from the trophectoderm. Compared to embryonic stem cells, we found that the bivalency (that is, co-occurrence of H3K4me3 and H3K27me3) in early embryos is relatively infrequent and unstable. Taken together, our results provide a genome-wide map of H3K4me3 and H3K27me3 modifications in pre-implantation embryos, facilitating further exploration of the mechanism for epigenetic regulation in early embryos.


Nature | 2016

Allelic reprogramming of the histone modification H3K4me3 in early mammalian development

Bingjie Zhang; Hui Zheng; Bo Huang; Wenzhi Li; Yunlong Xiang; Xu Peng; Jia Ming; Xiaotong Wu; Yu Zhang; Qianhua Xu; Wenqiang Liu; Xiaochen Kou; Yanhong Zhao; Wenteng He; Chong Li; Bo Chen; Yuanyuan Li; Qiujun Wang; Jing Ma; Qiangzong Yin; Kehkooi Kee; Anming Meng; Shaorong Gao; Feng Xu; Jie Na; Wei Xie

Histone modifications are fundamental epigenetic regulators that control many crucial cellular processes. However, whether these marks can be passed on from mammalian gametes to the next generation is a long-standing question that remains unanswered. Here, by developing a highly sensitive approach, STAR ChIP–seq, we provide a panoramic view of the landscape of H3K4me3, a histone hallmark for transcription initiation, from developing gametes to post-implantation embryos. We find that upon fertilization, extensive reprogramming occurs on the paternal genome, as H3K4me3 peaks are depleted in zygotes but are readily observed after major zygotic genome activation at the late two-cell stage. On the maternal genome, we unexpectedly find a non-canonical form of H3K4me3 (ncH3K4me3) in full-grown and mature oocytes, which exists as broad peaks at promoters and a large number of distal loci. Such broad H3K4me3 peaks are in contrast to the typical sharp H3K4me3 peaks restricted to CpG-rich regions of promoters. Notably, ncH3K4me3 in oocytes overlaps almost exclusively with partially methylated DNA domains. It is then inherited in pre-implantation embryos, before being erased in the late two-cell embryos, when canonical H3K4me3 starts to be established. The removal of ncH3K4me3 requires zygotic transcription but is independent of DNA replication-mediated passive dilution. Finally, downregulation of H3K4me3 in full-grown oocytes by overexpression of the H3K4me3 demethylase KDM5B is associated with defects in genome silencing. Taken together, these data unveil inheritance and highly dynamic reprogramming of the epigenome in early mammalian development.


Cell discovery | 2016

Identification of key factors conquering developmental arrest of somatic cell cloned embryos by combining embryo biopsy and single-cell sequencing

Wenqiang Liu; Xiaoyu Liu; Chenfei Wang; Yawei Gao; Rui Gao; Xiaochen Kou; Yanhong Zhao; You Wu; Wenchao Xiu; Su Wang; Jiqing Yin; Wei Liu; Tao Cai; Hong Wang; Yong Zhang; Shaorong Gao

Differentiated somatic cells can be reprogrammed into totipotent embryos through somatic cell nuclear transfer. However, most cloned embryos arrest at early stages and the underlying molecular mechanism remains largely unexplored. Here, we first developed a somatic cell nuclear transfer embryo biopsy system at two- or four-cell stage, which allows us to trace the developmental fate of the biopsied embryos precisely. Then, through single-cell transcriptome sequencing of somatic cell nuclear transfer embryos with different developmental fates, we identified that inactivation of Kdm4b, a histone H3 lysine 9 trimethylation demethylase, functions as a barrier for two-cell arrest of cloned embryos. Moreover, we discovered that inactivation of another histone demethylase Kdm5b accounts for the arrest of cloned embryos at the four-cell stage through single-cell analysis. Co-injection of Kdm4b and Kdm5b can restore transcriptional profiles of somatic cell nuclear transfer embryos and greatly improve the blastocyst development (over 95%) as well as the production of cloned mice. Our study therefore provides an effective approach to identify key factors responsible for the developmental arrest of somatic cell cloned embryos.


Stem Cells Translational Medicine | 2016

Naïve Induced Pluripotent Stem Cells Generated From β-Thalassemia Fibroblasts Allow Efficient Gene Correction With CRISPR/Cas9

Yuanyuan Yang; Xiaobai Zhang; Li Yi; Zhenzhen Hou; Jiayu Chen; Xiaochen Kou; Yanhong Zhao; Hong Wang; Xiaofang Sun; Cizhong Jiang; Yixuan Wang; Shaorong Gao

Conventional primed human embryonic stem cells and induced pluripotent stem cells (iPSCs) exhibit molecular and biological characteristics distinct from pluripotent stem cells in the naïve state. Although naïve pluripotent stem cells show much higher levels of self‐renewal ability and multidifferentiation capacity, it is unknown whether naïve iPSCs can be generated directly from patient somatic cells and will be superior to primed iPSCs. In the present study, we used an established 5i/L/FA system to directly reprogram fibroblasts of a patient with β‐thalassemia into transgene‐free naïve iPSCs with molecular signatures of ground‐state pluripotency. Furthermore, these naïve iPSCs can efficiently produce cross‐species chimeras. Importantly, using the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR‐associated protein 9 nuclease genome editing system, these naïve iPSCs exhibit significantly improved gene‐correction efficiencies compared with the corresponding primed iPSCs. Furthermore, human naïve iPSCs could be directly generated from noninvasively collected urinary cells, which are easily acquired and thus represent an excellent cell resource for further clinical trials. Therefore, our findings demonstrate the feasibility and superiority of using patient‐specific iPSCs in the naïve state for disease modeling, gene editing, and future clinical therapy.


Cell Reports | 2016

Hierarchical Oct4 Binding in Concert with Primed Epigenetic Rearrangements during Somatic Cell Reprogramming.

Jun Chen; Xiaolong Chen; Min Li; Xiaoyu Liu; Yawei Gao; Xiaochen Kou; Yanhong Zhao; Weisheng Zheng; Xiaobai Zhang; Yi Huo; Chuan Chen; You Wu; Hong Wang; Cizhong Jiang; Shaorong Gao

The core pluripotency factor Oct4 plays key roles in somatic cell reprogramming through transcriptional control. Here, we profile Oct4 occupancy, epigenetic changes, and gene expression in reprogramming. We find that Oct4 binds in a hierarchical manner to target sites with primed epigenetic modifications. Oct4 binding is temporally continuous and seldom switches between bound and unbound. Oct4 occupancy in most of promoters is maintained throughout the entire reprogramming process. In contrast, somatic cell-specific enhancers are silenced in the early and intermediate stages, whereas stem cell-specific enhancers are activated in the late stage in parallel with cell fate transition. Both epigenetic remodeling and Oct4 binding contribute to the hyperdynamic enhancer signature transitions. The hierarchical Oct4 bindings are associated with distinct functional themes at different stages. Collectively, our results provide a comprehensive molecular roadmap of Oct4 binding in concert with epigenetic rearrangements and rich resources for future reprogramming studies.


Stem Cells | 2014

Xist Repression Shows Time‐Dependent Effects on the Reprogramming of Female Somatic Cells to Induced Pluripotent Stem Cells

Qi Chen; Shuai Gao; Wenteng He; Xiaochen Kou; Yanhong Zhao; Hong Wang; Shaorong Gao

Although the reactivation of silenced X chromosomes has been observed as part of the process of reprogramming female somatic cells into induced pluripotent stem cells (iPSCs), it remains unknown whether repression of the X‐inactive specific transcript (Xist) can greatly enhance female iPSC induction similar to that observed in somatic cell nuclear transfer studies. In this study, we discovered that the repression of Xist plays opposite roles in the early and late phases of female iPSCs induction. Our results demonstrate that the downregulation of Xist by an isopropyl β‐d‐1‐thiogalactopyranoside (IPTG)‐inducible short hairpin RNA (shRNA) system can greatly impair the mesenchymal‐to‐epithelial transition (MET) in the early phase of iPSC induction but can significantly promote the transition of pre‐iPSCs to iPSCs in the late phase. Furthermore, we demonstrate that although the knockdown of Xist did not affect the H3K27me3 modification on the X chromosome, macroH2A was released from the inactivated X chromosome (Xi). This enables the X chromosome silencing to be a reversible event. Moreover, we demonstrate that the supplementation of vitamin C (Vc) can augment and stabilize the reversible X chromosome by preventing the relocalization of macroH2A to the Xi. Therefore, our study reveals an opposite role of Xist repression in the early and late stages of reprogramming female somatic cells to pluripotency and demonstrates that the release of macroH2A by Xist repression enables the transition from pre‐iPSCs to iPSCs. Stem Cells 2014;32:2642–2656


Cell Reports | 2014

Asymmetric Reprogramming Capacity of Parental Pronuclei in Mouse Zygotes

Wenqiang Liu; Jiqing Yin; Xiaochen Kou; Yonghua Jiang; Haibo Gao; Yanhong Zhao; Bo Huang; Wenteng He; Hong Wang; Zhiming Han; Shaorong Gao

It has been demonstrated that reprogramming factors are sequestered in the pronuclei of zygotes after fertilization, because zygotes enucleated at the M phase instead of interphase of the first mitosis can support the development of cloned embryos. However, the contribution of the parental pronucleus derived from either the sperm or the oocyte in reprogramming remains elusive. Here, we demonstrate that the parental pronuclei have asymmetric reprogramming capacities and that the reprogramming factors reside predominantly in the male pronucleus. As a result, only female pronucleus-depleted (FPD) mouse zygotes can reprogram somatic cells to a pluripotent state and support the full-term development of cloned embryos; male pronucleus-depleted (MPD) zygotes fail to support somatic cell reprogramming. We further demonstrate that fusion of an additional male pronucleus into a zygote greatly enhances reprogramming efficiency. Our data provide a clue to further identify critical reprogramming factors in the male pronucleus.


Human Genetics | 2017

Dosage effects of ZP2 and ZP3 heterozygous mutations cause human infertility

Wenqiang Liu; Kunming Li; Dandan Bai; Jiqing Yin; Yuanyuan Tang; Fengli Chi; Linfeng Zhang; Yu Wang; Jiaping Pan; Shanshan Liang; Yi Guo; Jingling Ruan; Xiaochen Kou; Yanhong Zhao; Hong Wang; Jiayu Chen; Xiaoming Teng; Shaorong Gao

The zona pellucida (ZP) is an extracellular matrix universally surrounding mammalian eggs, which is essential for oogenesis, fertilization, and pre-implantation embryo development. Here, we identified two novel heritable mutations of ZP2 and ZP3, both occurring in an infertile female patient with ZP-abnormal eggs. Mouse models with the same mutations were generated by CRISPR/Cas9 gene editing system, and oocytes obtained from female mice with either single heterozygous mutation showed approximately half of the normal ZP thickness compared to wild-type oocytes. Importantly, oocytes with both heterozygous mutations showed a much thinner or even missing ZP that could not avoid polyspermy fertilization, following the patient’s pedigree. Further analysis confirmed that precursor proteins produced from either mutated ZP2 or ZP3 could not anchor to oocyte membranes. From these, we conclude that ZP mutations have dosage effects which can cause female infertility in humans. Finally, this patient was treated by intracytoplasmic sperm injection (ICSI) with an improved culture system and successfully delivered a healthy baby.


Journal of Biological Chemistry | 2017

Maternal Sall4 Is Indispensable for Epigenetic Maturation of Mouse Oocytes

Kai Xu; Xia Chen; Hui Yang; Yiwen Xu; Yuanlin He; Chenfei Wang; Hua Huang; Baodong Liu; Wenqiang Liu; Xiaochen Kou; Yanhong Zhao; Kun Zhao; Linfeng Zhang; Zhenzhen Hou; Hong Wang; Hailin Wang; Jing zhou Li; Heng-Yu Fan; Fengchao Wang; Yawei Gao; Yong Zhang; Jiayu Chen; Shaorong Gao

Sall4 (Splat-like 4) plays important roles in maintaining pluripotency of embryonic stem cells and in various developmental processes. Here, we find that Sall4 is highly expressed in oocytes and early embryos. To investigate the roles of SALL4 in oogenesis, we generated Sall4 maternal specific knock-out mice by using CRISPR/Cas9 system, and we find that the maternal deletion of Sall4 causes developmental arrest of oocytes at germinal vesicle stage with non-surrounded nucleus, and the subsequent meiosis resumption is prohibited. We further discover that the loss of maternal Sall4 causes failure in establishment of DNA methylation in oocytes. Furthermore, we find that Sall4 modulates H3K4me3 and H3K27me3 modifications by regulating the expression of key histone demethylases coding genes Kdm5b, Kdm6a, and Kdm6b in oocytes. Moreover, we demonstrate that the aberrant H3K4me3 and H3K27me3 cause mis-expression of genes that are critical for oocytes maturation and meiosis resumption. Taken together, our study explores a pivotal role of Sall4 in regulating epigenetic maturation of mouse oocytes.


Nature Cell Biology | 2018

Reprogramming of H3K9me3-dependent heterochromatin during mammalian embryo development

Chenfei Wang; Xiaoyu Liu; Yawei Gao; Lei Yang; Chong Li; Wenqiang Liu; Chuan Chen; Xiaochen Kou; Yanhong Zhao; Jiayu Chen; Yixuan Wang; Rongrong Le; Hong Wang; Tao Duan; Yong Zhang; Shaorong Gao

H3K9me3-dependent heterochromatin is a major barrier of cell fate changes that must be reprogrammed after fertilization. However, the molecular details of these events are lacking in early embryos. Here, we map the genome-wide distribution of H3K9me3 modifications in mouse early embryos. We find that H3K9me3 exhibits distinct dynamic features in promoters and long terminal repeats (LTRs). Both parental genomes undergo large-scale H3K9me3 reestablishment after fertilization, and the imbalance in parental H3K9me3 signals lasts until blastocyst. The rebuilding of H3K9me3 on LTRs is involved in silencing their active transcription triggered by DNA demethylation. We identify that Chaf1a is essential for the establishment of H3K9me3 on LTRs and subsequent transcriptional repression. Finally, we find that lineage-specific H3K9me3 is established in post-implantation embryos. In summary, our data demonstrate that H3K9me3-dependent heterochromatin undergoes dramatic reprogramming during early embryonic development and provide valuable resources for further exploration of the epigenetic mechanism in early embryos.Gao and colleagues characterize genome-wide H3K9me3 distributions in pre- and post-implantation mouse embryos, providing a resource to further our understanding of epigenomic dynamics during mammalian embryogenesis.

Collaboration


Dive into the Yanhong Zhao's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge