Yanlong Wang
Soochow University (Taiwan)
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Yanlong Wang.
Journal of the American Chemical Society | 2015
Yanlong Wang; Zhiyong Liu; Yuxiang Li; Zhuanling Bai; Wei Liu; Yaxing Wang; Xiaomei Xu; Chengliang Xiao; Daopeng Sheng; Juan Diwu; Jing Su; Zhifang Chai; Thomas E. Albrecht-Schmitt; Shuao Wang
Searching for new chemically durable and radiation-resistant absorbent materials for actinides and their fission products generated in the nuclear fuel cycle remain highly desirable, for both waste management and contamination remediation. Here we present a rare case of 3D uranyl organic framework material built through polycatenating of three sets of graphene-like layers, which exhibits significant umbellate distortions in the uranyl equatorial planes studied thoroughly by linear transit calculations. This unique structural arrangement leads to high β and γ radiation-resistance and chemical stability in aqueous solutions within a wide pH range from 3 to 12. Being equipped with the highest surface area among all actinide compounds known to date and completely exchangeable [(CH3)2NH2](+) cations in the structure, this material is able to selectively remove cesium from aqueous solutions while retaining the polycatenated framework structure.
Nature Communications | 2017
Tao Zheng; Zaixing Yang; Daxiang Gui; Zhiyong Liu; Xiangxiang Wang; Xing Dai; Shengtang Liu; Linjuan Zhang; Yang Gao; Lanhua Chen; Daopeng Sheng; Yanlong Wang; Juan Diwu; Jianqiang Wang; Ruhong Zhou; Zhifang Chai; Thomas E. Albrecht-Schmitt; Shuao Wang
Metal-organic frameworks (MOFs) based on zirconium phosphonates exhibit superior chemical stability suitable for applications under harsh conditions. These compounds mostly exist as poorly crystallized precipitates, and precise structural information has therefore remained elusive. Furthermore, a zero-dimensional zirconium phosphonate cluster acting as secondary building unit has been lacking, leading to poor designability in this system. Herein, we overcome these challenges and obtain single crystals of three zirconium phosphonates that are suitable for structural analysis. These compounds are built by previously unknown isolated zirconium phosphonate clusters and exhibit combined high porosity and ultrastability even in fuming acids. SZ-2 possesses the largest void volume recorded in zirconium phosphonates and SZ-3 represents the most porous crystalline zirconium phosphonate and the only porous MOF material reported to survive in aqua regia. SZ-2 and SZ-3 can effectively remove uranyl ions from aqueous solutions over a wide pH range, and we have elucidated the removal mechanism.
Environmental Science & Technology | 2017
Daopeng Sheng; Lin Zhu; Chao Xu; Chengliang Xiao; Yanlong Wang; Yaxing Wang; Lanhua Chen; Juan Diwu; Jing Chen; Zhifang Chai; Thomas E. Albrecht-Schmitt; Shuao Wang
99Tc is one of the most problematic radioisotopes in used nuclear fuel owing to its combined features of high fission yield, long half-life, and high environmental mobility. There are only a handful of functional materials that can remove TcO4- anion from aqueous solution and identifying for new, stable materials with high anion-exchange capacities, fast kinetics, and good selectivity remains a challenge. We report here an 8-fold interpenetrated three-dimensional cationic metal-organic framework material, SCU-100, which is assembled from a tetradentate neutral nitrogen-donor ligand and two-coordinate Ag+ cations as potential open metal sites. The structure also contains a series of 1D channels filled with unbound nitrate anions. SCU-100 maintains its crystallinity in aqueous solution over a wide pH range from 1 to 13 and exhibits excellent β and γ radiation-resistance. Initial anion exchange studies show that SCU-100 is able to both quantitatively and rapidly remove TcO4- from water within 30 min. The exchange capacity for the surrogate ReO4- reaches up to 541 mg/g and the distribution coefficient Kd is up to 1.9 × 105 mL/g, which are significantly higher than all previously tested inorganic anion sorbent materials. More importantly, SCU-100 can selectively capture TcO4- in the presence of large excess of competitive anions (NO3-, SO42-, CO32-, and PO43-) and remove as much as 87% of TcO4- from the Hanford low-level waste melter off-gas scrubber simulant stream within 2 h. The sorption mechanism is well elucidated by single crystal X-ray diffraction, showing that the sorbed ReO4- anion is able to selectively coordinate to the open Ag+ sites forming Ag-O-Re bonds and a series of hydrogen bonds. This further leads to a single-crystal-to-single-crystal transformation from an 8-fold interpenetrated framework with disordered nitrate anions to a 4-fold interpenetrated framework with fully ordered ReO4- anions. This work represents a practical case of TcO4- removal by a MOF material and demonstrates the promise of using this type of material as a scavenger for treating anionic radioactive contaminants during the nuclear waste partitioning and remediation processes.
Environmental Science & Technology | 2017
Wei Liu; Xing Dai; Zhuanling Bai; Yanlong Wang; Zaixing Yang; Linjuan Zhang; Lin Xu; Lanhua Chen; Yuxiang Li; Daxiang Gui; Juan Diwu; Jianqiang Wang; Ruhong Zhou; Zhifang Chai; Shuao Wang
Uranium is not only a strategic resource for the nuclear industry but also a global contaminant with high toxicity. Although several strategies have been established for detecting uranyl ions in water, searching for new uranium sensor material with great sensitivity, selectivity, and stability remains a challenge. We introduce here a hydrolytically stable mesoporous terbium(III)-based MOF material compound 1, whose channels are as large as 27 Å × 23 Å and are equipped with abundant exposed Lewis basic sites, the luminescence intensity of which can be efficiently and selectively quenched by uranyl ions. The detection limit in deionized water reaches 0.9 μg/L, far below the maximum contamination standard of 30 μg/L in drinking water defined by the United States Environmental Protection Agency, making compound 1 currently the only MOF material that can achieve this goal. More importantly, this material exhibits great capability in detecting uranyl ions in natural water systems such as lake water and seawater with pH being adjusted to 4, where huge excesses of competing ions are present. The uranyl detection limits in Dushu Lake water and in seawater were calculated to be 14.0 and 3.5 μg/L, respectively. This great detection capability originates from the selective binding of uranyl ions onto the Lewis basic sites of the MOF material, as demonstrated by synchrotron radiation extended X-ray adsorption fine structure, X-ray adsorption near edge structure, and first principles calculations, further leading to an effective energy transfer between the uranyl ions and the MOF skeleton.
ACS Applied Materials & Interfaces | 2017
Wei Liu; Yanlong Wang; Zhuanling Bai; Yuxiang Li; Yaxing Wang; Lanhua Chen; Lin Xu; Juan Diwu; Zhifang Chai; Shuao Wang
Effective detection of chromate anions in aqueous solution is highly desirable because of their high solubility, environmental mobility, carcinogenicity, and bioaccumulation effect. A new strategy for precise detection of chromate anions in the presence of a large excess of other anions, such as Cl-, NO3-, and HCO3-, in drinking water and natural water systems remains a challenge. Herein, a hydrolytically stable cationic luminescent europium(III)-based metal organic framework (MOF), 1, was successfully synthesized and investigated as a luminescent sensor that exhibits instant and selective luminescence quenching properties toward chromate ions in aqueous solutions. Moreover, 1 can be introduced into high-ionic-strength water system (e.g., seawater) for chromate detection as a consequence of the excellent sensing selectivity. The real environmental application of 1 as a chromate probe is studied in deionized water, lake water, and seawater. The detection limits in these aqueous media are calculated to be 0.56, 2.88, and 1.75 ppb, respectively. All of these values are far below the maximum contamination standard of Cr(VI) in drinking water of 100 ppb, defined by the U.S. Environmental Protection Agency. This excellent chromate sensing capability originates from the fast enrichment of chromate ions in solids of 1 from solutions, followed by efficient energy transfer from the MOF skeleton to the chromate anion, as demonstrated by solution absorption spectroscopy, X-ray diffraction, and chromate uptake kinetics and isotherm investigations. To the best of our knowledge, 1 possesses the lowest chromate detection limit among all reported MOFs up to date and is the only MOF material reported for chromate sensing application under environmentally relevant conditions with high ionic strengths.
Journal of the American Chemical Society | 2017
Lin Zhu; Daopeng Sheng; Chao Xu; Xing Dai; Mark A. Silver; Jie Li; Peng Li; Yaxing Wang; Yanlong Wang; Lanhua Chen; Chengliang Xiao; Jing Chen; Ruhong Zhou; Chao Zhang; Omar K. Farha; Zhifang Chai; Thomas E. Albrecht-Schmitt; Shuao Wang
Effective and selective removal of 99TcO4- from aqueous solution is highly desirable for both waste partitioning and contamination remediation purposes in the modern nuclear fuel cycle, but is of significant challenge. We report here a hydrolytically stable and radiation-resistant cationic metal-organic framework (MOF), SCU-101, exhibiting extremely fast removal kinetics, exceptional distribution coefficient, and high sorption capacity toward TcO4-. More importantly, this material can selectively remove TcO4- in the presence of large excesses of NO3- and SO42-, as even 6000 times of SO42- in excess does not significantly affect the sorption of TcO4-. These superior features endow that SCU-101 is capable of effectively separating TcO4- from Hanford low-level waste melter off-gas scrubber simulant stream. The sorption mechanism is directly unraveled by the single crystal structure of TcO4--incorporated SCU-101, as the first reported crystal structure to display TcO4- trapped in a sorbent material. A recognition site for the accommodation of TcO4- is visualized and is consistent with the DFT analysis results, while no such site can be resolved for other anions.
Nature Communications | 2017
Yuxiang Li; Zaixing Yang; Yanlong Wang; Zhuanling Bai; Tao Zheng; Xing Dai; Shengtang Liu; Daxiang Gui; Wei Liu; Meng Chen; Lanhua Chen; Juan Diwu; Lingyan Zhu; Ruhong Zhou; Zhifang Chai; Thomas E. Albrecht-Schmitt; Shuao Wang
Many environmental pollutants inherently exist in their anionic forms and are therefore highly mobile in natural water systems. Cationic framework materials that can capture those pollutants are highly desirable but scarcely reported. Here we present a mesoporous cationic thorium-based MOF (SCU-8) containing channels with a large inner diameter of 2.2 nm and possessing a high surface area of 1360 m2 g−1. The anion-exchange properties of SCU-8 were explored with many anions including small oxo anions like ReO4− and Cr2O72− as well as anionic organic dyes like methyl blue and the persistent organic pollutant, perfluorooctane sulfonate (PFOS). Both fast uptake kinetics and great sorption selectivity toward PFOS are observed. The underlying sorption mechanism was probed using quantum mechanical and molecular dynamics simulations. These computational results reveal that PFOS anions are immobilized in SCU-8 by driving forces including electrostatic interactions, hydrogen bonds, hydrophobic interactions, and van der Waals interactions at different adsorption stages.Cationic metal-organic frameworks provide promising opportunities to capture anionic pollutants, but stable frameworks with sufficiently large pores are lacking. Here the authors present a thorium-based mesoporous, cationic and hydrolytically-stable MOF that can rapidly trap inorganic and organic anionic pollutants.
ACS Applied Materials & Interfaces | 2017
Long Chen; Zhuanling Bai; Lin Zhu; Linjuan Zhang; Yawen Cai; Yuxiang Li; Wei Liu; Yanlong Wang; Lanhua Chen; Juan Diwu; Jianqiang Wang; Zhifang Chai; Shuao Wang
Enrichment of uranyl from seawater is crucial for the sustainable development of nuclear energy, but current uranium extraction technology suffers from multiple drawbacks of low sorption efficiency, slow uptake kinetics, or poor extraction selectivity. Herein, we prepared the first example of amidoxime appended metal-organic framework UiO-66-AO by a postsynthetic modification method for rapid and efficient extraction of uranium from seawater. UiO-66-AO can remove 94.8% of uranyl ion from Bohai seawater within 120 min and 99% of uranyl ion from Bohai seawater containing extra 500 ppb uranium within 10 min. The uranyl sorption capacity in a real seawater sample was determined to be 2.68 mg/g. In addition, the recyclability of the UiO-66-AO framework was demonstrated for at least three adsorption/desorption cycles. The origin for the superior sorption capability was further probed by extended X-ray absorption fine structure (EXAFS) analysis on the uranium-sorbed sample, suggesting multiple amidoxime ligands are able to chelate uranyl(VI) ions, forming a hexagonal bipyramid coordination geometry.
Inorganic Chemistry | 2016
Zhuanling Bai; Yanlong Wang; Yuxiang Li; Wei Liu; Lanhua Chen; Daopeng Sheng; Juan Diwu; Zhifang Chai; Thomas E. Albrecht-Schmitt; Shuao Wang
By controlling the extent of hydrolysis during the self-assembly process of a zwitterionic-based ligand with uranyl cations, we observed a structural evolution from the neutral uranyl-organic framework [(UO2)2(TTTPC)(OH)O(COOH)]·1.5DMF·7H2O (SCU-6) to the first cationic uranyl-organic framework with the formula of [(UO2)(HTTTPC)(OH)]Br·1.5DMF·4H2O (SCU-7). The crystal structures of SCU-6 and SCU-7 are layers built with tetranuclear and dinuclear uranyl clusters, respectively. Exchangeable halide anions are present in the interlaminar spaces balancing the positive charge of layers in SCU-7. Therefore, SCU-7 is able to effectively remove perrhenate anions from aqueous solution. Meanwhile, the H2PO4(-)-exchanged SCU-7 material exhibits a moderate proton conductivity of 8.70 × 10(-5) S cm(-1) at 50 °C and 90% relative humidity, representing nearly 80 times enhancement compared to the original material.
Applied Physics Letters | 2014
Lei Zhang; Xueguang Zhang; Yahong Chen; J. N. Su; Wei Liu; T.H. Zhang; F. Qi; Yanlong Wang
In recent years, graphene has emerged as potential reinforcing nanofiller in the composites for structural engineering due to its extraordinary high elastic modulus and mechanical strength. As recognized, the transfer of stress from a low modulus matrix to a high-modulus reinforcing graphene and the interfacial behavior at a graphene-matrix interface is the fundamental issue in these composites. In the case of graphene nanosheet (GNS) reinforced hydroxyapatite (HA) composite, this research presented analytical models and simulated that the number of graphene layers of GNSs has little effect on the maximum axial stress (∼0.35 GPa) and the maximum shear stress (∼0.14 GPa) at a GNS-HA interface, and the energy dissipation by GNS pull-out decreases with increasing the number of graphene layers due to weak bonding between them. Also, GNS-HA interfacial delamination and/or GNS rupture were also indentified to be the two key failure mechanisms. The computed results are expected to facilitate a better understandi...