Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yann Le Page is active.

Publication


Featured researches published by Yann Le Page.


Frontiers in Neuroendocrinology | 2010

Aromatase in the brain of teleost fish: expression, regulation and putative functions.

Nicolas Diotel; Yann Le Page; Karen Mouriec; Sok-Keng Tong; Elisabeth Pellegrini; Colette Vaillant; Isabelle Anglade; François Brion; Farzad Pakdel; Bon-chu Chung; Olivier Kah

Unlike that of mammals, the brain of teleost fish exhibits an intense aromatase activity due to the strong expression of one of two aromatase genes (aromatase A or cyp19a1a and aromatase B or cyp19a1b) that arose from a gene duplication event. In situ hybridization, immunohistochemistry and expression of GFP (green fluorescent protein) in transgenic tg(cyp19a1b-GFP) fish demonstrate that aromatase B is only expressed in radial glial cells (RGC) of adult fish. These cells persist throughout life and act as progenitors in the brain of both developing and adult fish. Although aromatase B-positive radial glial cells are most abundant in the preoptic area and the hypothalamus, they are observed throughout the entire central nervous system and spinal cord. In agreement with the fact that brain aromatase activity is correlated to sex steroid levels, the high expression of cyp19a1b is due to an auto-regulatory loop through which estrogens and aromatizable androgens up-regulate aromatase expression. This mechanism involves estrogen receptor binding on an estrogen response element located on the cyp19a1b promoter. Cell specificity is achieved by a mandatory cooperation between estrogen receptors and unidentified glial factors. Given the emerging roles of estrogens in neurogenesis, the unique feature of the adult fish brain suggests that, in addition to classical functions on brain sexual differentiation and sexual behaviour, aromatase expression in radial glial cells could be part of the mechanisms authorizing the maintenance of a high proliferative activity in the brain of fish.


The Journal of Comparative Neurology | 2007

Identification of aromatase-positive radial glial cells as progenitor cells in the ventricular layer of the forebrain in zebrafish.

Elisabeth Pellegrini; Karen Mouriec; Isabelle Anglade; Arnaud Menuet; Yann Le Page; Marie-Madeleine Gueguen; Marie-Hélène Marmignon; François Brion; Farzad Pakdel; Olivier Kah

Compared with other vertebrates, the brain of adult teleost fish exhibits two unique features: it exhibits unusually high neurogenic activity and strongly expresses aromatase, a key enzyme that converts aromatizable androgens into estrogens. Until now, these two features, high neurogenic and aromatase activities, have never been related to each other. Recently, it was shown that aromatase is expressed in radial glial cells of the forebrain and not in neurons. Here, we further document that Aromatase B is never detected in cells expressing the markers of postmitotic neurons, Hu and acetylated tubulin. By using a combination of bromodeoxyuridine (BrdU) treatment and immunohistochemical techniques, we demonstrate for the first time to our knowledge that aromatase‐positive radial cells actively divide to generate newborn cells in many forebrain regions. Such newborn cells can further divide, as shown by BrdU‐proliferating cell nuclear antigen double staining. We also demonstrate that, over time, newborn cells move away from the ventricles, most likely by migrating along the radial processes. Finally, by using antisera to Hu and acetylated tubulin, we further document that some of the newborn cells derived from radial glia differentiate into neurons. These data provide new evidence for the mechanism of neurogenesis in the brain of adult fish. In addition, given that estrogens are well‐known neurotrophic and neuroprotective factors affecting proliferation, apoptosis, migration, and differentiation, the expression of aromatase in the neural stem cells of the adult strongly demonstrates that the fish brain is an outstanding model for studying the effects of estrogens on adult neurogenesis and brain repair. J. Comp. Neurol. 501:150–167, 2007.


PLOS ONE | 2012

Screening estrogenic activities of chemicals or mixtures in vivo using transgenic (cyp19a1b-GFP) zebrafish embryos.

François Brion; Yann Le Page; Benjamin Piccini; Olivier Cardoso; Sok-Keng Tong; Bon-chu Chung; Olivier Kah

The tg(cyp19a1b-GFP) transgenic zebrafish expresses GFP (green fluorescent protein) under the control of the cyp19a1b gene, encoding brain aromatase. This gene has two major characteristics: (i) it is only expressed in radial glial progenitors in the brain of fish and (ii) it is exquisitely sensitive to estrogens. Based on these properties, we demonstrate that natural or synthetic hormones (alone or in binary mixture), including androgens or progestagens, and industrial chemicals induce a concentration-dependent GFP expression in radial glial progenitors. As GFP expression can be quantified by in vivo imaging, this model presents a very powerful tool to screen and characterize compounds potentially acting as estrogen mimics either directly or after metabolization by the zebrafish embryo. This study also shows that radial glial cells that act as stem cells are direct targets for a large panel of endocrine disruptors, calling for more attention regarding the impact of environmental estrogens and/or certain pharmaceuticals on brain development. Altogether these data identify this in vivo bioassay as an interesting alternative to detect estrogen mimics in hazard and risk assessment perspective.


Environmental Health Perspectives | 2005

Assessment of xenoestrogens using three distinct estrogen receptors and the zebrafish brain aromatase gene in a highly responsive glial cell system

Yann Le Page; Martin Scholze; Olivier Kah; Farzad Pakdel

The brain cytochrome P450 aromatase (Aro-B) in zebrafish is expressed in radial glial cells and is strongly stimulated by estrogens (E2); thus, it can be used in vivo as a biomarker of xenoestrogen effects on the central nervous system. By quantitative real-time polymerase chain reaction, we first confirmed that the expression of Aro-B gene is robustly stimulated in juvenile zebrafish exposed to several xenoestrogens. To investigate the impact of environmental estrogenic chemicals on distinct estrogen receptor (ER) activity, we developed a glial cell-based assay using Aro-B as the target gene. To this end, the ER-negative glial cell line U251-MG was transfected with the three zebrafish ER subtypes and the Aro-B promoter linked to a luciferase reporter gene. E2 treatment of U251-MG glial cells cotransfected with zebrafish ER-α and the Aro-B promoter–luciferase reporter resulted in a 60- to 80-fold stimulation of luciferase activity. The detection limit was < 0.05 nM, and the EC50 (median effective concentration) was 1.4 nM. Interestingly, in this glial cell context, maximal induction achieved with the Aro-B reporter was three times greater than that observed with a classical estrogen-response-element reporter gene (ERE-tk-Luc). Dose–response analyses with ethynylestradiol (EE2), estrone (E1), α-zeralenol, and genistein showed that estrogenic potency of these agents markedly differed depending on the ER subtype in the assay. Moreover, the combination of these agents showed an additive effect according to the concept of concentration addition. This confirmed that the combined additive effect of the xenoestrogens leads to an enhancement of the estrogenic potency, even when each single agent might be present at low effect concentrations. In conclusion, we demonstrate that our bioassay provides a fast, reliable, sensitive, and efficient test for evaluating estrogenic potency of endocrine disruptors on ER subtypes in a glial context.


European Journal of Neuroscience | 2010

Aromatase, brain sexualization and plasticity: the fish paradigm

Yann Le Page; Nicolas Diotel; Colette Vaillant; Elisabeth Pellegrini; Isabelle Anglade; Yohann Mérot; Olivier Kah

In contrast to mammals, teleost fish have a very labile genetic sex determination. Sex differentiation is influenced by a combination of hormonal, social and environmental factors and teleost fishes exhibit many examples of hermaphroditism. This means that the brain of fish is not irreversibly sexualized early in life. This review aims at highlighting some unique features of fish that may explain their brain sexual plasticity. Unlike mammals, in which brain aromatase activity decreases after birth, adult teleosts exhibit an intense aromatase activity due to strong expression of one of two aromatase genes (aromatase A or cyp19a1a and aromatase B or cyp19a1b) that arose from a gene duplication event. Interestingly, aromatase B is only expressed in radial glial cells (RGC) of adult fish. These cells persist throughout life and act as progenitors in the brain of both developing and adult fish. In agreement with the fact that brain aromatase activity is correlated with sex steroid levels, the high expression of cyp19a1b is due to an autoregulatory loop through which estrogens and aromatizable androgens upregulate aromatase expression. Given the well‐established roles of estrogens and aromatase on brain sexualization, these features suggest that the brain of fish conserves properties of embryonic mammalian brain throughout life – high neurogenic activity and high aromatase expression in progenitor cells correlated with sex steroid levels. The permanent dialogue between the brain and the gonad would permit sex changes and thus the emergence of a variety of reproductive strategies. Other hypotheses are also discussed.


Aquatic Toxicology | 2010

17alpha-ethinylestradiol disrupts the ontogeny of the forebrain GnRH system and the expression of brain aromatase during early development of zebrafish.

Mélanie Vosges; Yann Le Page; Bon-chu Chung; Yves Combarnous; Jean-Marc Porcher; Olivier Kah; François Brion

Until now, studies dedicated to the actions of endocrine disrupting chemicals (EDCs) on the reproductive axis have been concerned with their effects at the gonadal level leaving their actions on neuroendocrine circuits controlling reproduction virtually unexplored. In vertebrates, gonadotropin-releasing hormone (GnRH) is the key factor controlling the activity of the reproductive axis. The development and functioning of GnRH neurons are finely tuned by a series of factors, notably sex steroids, making these neurons potential targets of EDCs, notably in aquatic species. By means of immunohistochemistry, we examined the effects of low levels of ethinylestradiol (EE2 0.02 nM, 0.1 nM, 0.5 nM), a potent synthetic estrogen, on early development (at 5, 10, 20, 30 days post-fertilization) of the forebrain GnRH neurons in a model fish species, the zebrafish (Danio rerio). In parallel, the ER-regulated expression of cytochrome P450 aromatase B (AroB) protein, which is encoded by the cyp19a1b gene, was precisely mapped at the brain and pituitary levels in developing control and EE2-exposed zebrafish. We show that EE2 disrupts the ontogeny of GnRH system by inducing an increase in the number of GnRH-ir neurons and GnRH fibers based on their immunoreactivity as well as a decrease in the size of the GnRH-ir soma and a modification of the migration profile of GnRH-ir neurons. Furthermore, we report a spectacular dose and time-dependent induction of AroB expression in radial glial cells of the developing brain further illustrating the extreme sensitivity of AroB to xenoestrogen and the relevance of AroB as biomarker of xenoestrogen effects on the central nervous system. Collectively, these original and relevant observations highlight the sensitivity of GnRH and AroB to a synthetic estrogen during embryogenesis. These data reinforce the need to further study the mechanisms underlying EDC effects on key neuroendocrine circuits involved in reproduction and brain development of vertebrates.


Molecular Reproduction and Development | 2008

Characterization of a cis‐acting element involved in cell‐specific expression of the zebrafish brain aromatase gene

Yann Le Page; Arnaud Menuet; Olivier Kah; Farzad Pakdel

The cytochrome P450 Aromatase is the key enzyme catalyzing the conversion of androgens into estrogens. In zebrafish, the brain aromatase is encoded by cyp19b. Expression of cyp19b is restricted to radial glial cells bordering forebrain ventricles and is strongly stimulated by estrogens during development. At the promoter level, we have previously shown that an estrogen responsive element (ERE) is required for induction by estrogens. Here, we investigated the role of ERE flanking regions in the control of cell‐specific expression. First, we show that a 20 bp length motif, named G×RE (glial × responsive element), acts in synergy with the ERE to mediate the estrogenic induction specifically in glial cells. Second, we demonstrate that, in vitro, this sequence binds factors exclusively present in glial or neuro‐glial cells and is able to confer a glial specificity to an artificial estrogen‐dependent gene. Taken together, these results contribute to the understanding of the molecular mechanisms allowing cyp19b regulation by estrogens and allowed to identify a promoter sequence involved in the strong estrogen inducibility of cyp19b which is specific for glial cells. The exceptional aromatase activity measured in the brain of teleost fish could rely on such mechanisms. Mol. Reprod. Dev. 75: 1549–1557


Journal of Cell Science | 2011

A functional analysis of MELK in cell division reveals a transition in the mode of cytokinesis during Xenopus development

Yann Le Page; Isabelle Chartrain; Caroline Badouel; Jean-Pierre Tassan

MELK is a serine/threonine kinase involved in several cell processes, including the cell cycle, proliferation, apoptosis and mRNA processing. However, its function remains elusive. Here, we explored its role in the Xenopus early embryo and show by knockdown that xMELK (Xenopus MELK) is necessary for completion of cell division. Consistent with a role in cell division, endogenous xMELK accumulates at the equatorial cortex of anaphase blastomeres. Its relocalization is highly dynamic and correlates with a conformational rearrangement in xMELK. Overexpression of xMELK leads to failure of cytokinesis and impairs accumulation at the division furrow of activated RhoA – a pivotal regulator of cytokinesis. Furthermore, endogenous xMELK associates and colocalizes with the cytokinesis organizer anillin. Unexpectedly, our study reveals a transition in the mode of cytokinesis correlated to cell size and that implicates xMELK. Collectively, our findings disclose the importance of xMELK in cytokinesis during early development and show that the mechanism of cytokinesis changes during Xenopus early development.


Reproductive Toxicology | 2012

17α-Ethinylestradiol and nonylphenol affect the development of forebrain GnRH neurons through an estrogen receptors-dependent pathway.

Mélanie Vosges; Olivier Kah; Nathalie Hinfray; Edith Chadili; Yann Le Page; Yves Combarnous; Jean-Marc Porcher; François Brion

There is growing evidence that neuroendocrine circuits controlling development and reproduction are targeted by EDCs. We have previously demonstrated that low concentrations of 17α-ethinylestradiol (EE2) disrupt the development of forebrain GnRH neurons during zebrafish development. The objectives of the present study were to determine whether the weak estrogenic compound, nonylphenol (NP), could elicit similar effects to EE2 and to what extent the estrogen receptors are involved in mediating these effects. Using immunohistochemistry, we confirmed that EE2 exposure induces an increase in the number of GnRH-ir neurons and we demonstrated that NP is able to produce similar effects in a concentration-dependent manner. The effects of both NP and EE2 were shown to be blocked by the estrogen receptors (ERs) antagonist ICI 182-780, demonstrating the involvement of functional ERs in mediating their effects. Altogether, these results highlight the need to consider neuroendocrine networks as critical endpoints in the field of endocrine disruption.


Biology Open | 2013

Cell-cycle dependent localization of MELK and its new partner RACK1 in epithelial versus mesenchyme-like cells in Xenopus embryo.

Isabelle Chartrain; Yann Le Page; Guillaume Hatte; Roman Körner; Jacek Z. Kubiak; Jean-Pierre Tassan

Summary Maternal Embryonic Leucine zipper Kinase (MELK) was recently shown to be involved in cell division of Xenopus embryo epithelial cells. The cytokinetic furrow of these cells ingresses asymmetrically and is developmentally regulated. Two subpopulations of xMELK, the mMELK (for “mitotic” xMELK) and iMELK (“interphase” xMELK), which differ in their spatial and temporal regulation, are detected in Xenopus embryo. How cells regulate these two xMELK populations is unknown. In this study we show that, in epithelial cells, xMELK is present at a higher concentration at the apical junctional complex, in contrast to mesenchyme-like cells, which have uniform distribution of cortical MELK. Interestingly, mMELK and iMELK also differ by their requirements towards cell–cell contacts to establish their proper cortical localization both in epithelial and mesenchyme-like cells. Receptor for Activated protein Kinase C (RACK1), which we identified as an xMELK partner, co-localizes with xMELK at the tight junction. Moreover, a truncated RACK1 construct interferes with iMELK localization at cell–cell contacts. Collectively, our results suggest that iMELK and RACK1 are present in the same complex and that RACK1 is involved in the specific recruitment of iMELK at the apical junctional complex in epithelial cells of Xenopus embryos.

Collaboration


Dive into the Yann Le Page's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Farzad Pakdel

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Farzad Pakdel

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge