Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yannick Rondelez is active.

Publication


Featured researches published by Yannick Rondelez.


Nature | 2005

Highly coupled ATP synthesis by F1-ATPase single molecules

Yannick Rondelez; Guillaume Tresset; Takako Nakashima; Yasuyuki Kato-Yamada; Hiroyuki Fujita; Shoji Takeuchi; Hiroyuki Noji

F1-ATPase is the smallest known rotary motor, and it rotates in an anticlockwise direction as it hydrolyses ATP. Single-molecule experiments point towards three catalytic events per turn, in agreement with the molecular structure of the complex. The physiological function of F1 is ATP synthesis. In the ubiquitous F0F1 complex, this energetically uphill reaction is driven by F0, the partner motor of F1, which forces the backward (clockwise) rotation of F1, leading to ATP synthesis. Here, we have devised an experiment combining single-molecule manipulation and microfabrication techniques to measure the yield of this mechanochemical transformation. Single F1 molecules were enclosed in femtolitre-sized hermetic chambers and rotated in a clockwise direction using magnetic tweezers. When the magnetic field was switched off, the F1 molecule underwent anticlockwise rotation at a speed proportional to the amount of synthesized ATP. At 10 Hz, the mechanochemical coupling efficiency was low for the α3β3γ subcomplex (F1-ɛ), but reached up to 77% after reconstitution with the ɛ-subunit (F1+ɛ). We provide here direct evidence that F1 is designed to tightly couple its catalytic reactions with the mechanical rotation. Our results suggest that the ɛ-subunit has an essential function during ATP synthesis.


Nature Biotechnology | 2005

Microfabricated arrays of femtoliter chambers allow single molecule enzymology

Yannick Rondelez; Guillaume Tresset; Kazuhito V. Tabata; Hideyuki F. Arata; Hiroyuki Fujita; Shoji Takeuchi; Hiroyuki Noji

Precise understanding of biological functions requires tools comparable in size to the basic components of life. Single molecule studies have revealed molecular behaviors usually hidden in the ensemble- and time-averaging of bulk experiments. Although most such approaches rely on sophisticated optical strategies to limit the detection volume, another attractive approach is to perform the assay inside very small containers. We have developed a silicone device presenting a large array of micrometer-sized cavities. We used it to tightly enclose volumes of solution, as low as femtoliters, over long periods of time. The microchip insures that the chambers are uniform and precisely positioned. We demonstrated the feasibility of our approach by measuring the activity of single molecules of β-galactosidase and horseradish peroxidase. The approach should be of interest for many ultrasensitive bioassays at the single-molecule level.


Molecular Systems Biology | 2014

Programming an in vitro DNA oscillator using a molecular networking strategy

Kevin Montagne; Raphaël Plasson; Yasuyuki Sakai; Teruo Fujii; Yannick Rondelez

Living organisms perform and control complex behaviours by using webs of chemical reactions organized in precise networks. This powerful system concept, which is at the very core of biology, has recently become a new foundation for bioengineering. Remarkably, however, it is still extremely difficult to rationally create such network architectures in artificial, non‐living and well‐controlled settings. We introduce here a method for such a purpose, on the basis of standard DNA biochemistry. This approach is demonstrated by assembling de novo an efficient chemical oscillator: we encode the wiring of the corresponding network in the sequence of small DNA templates and obtain the predicted dynamics. Our results show that the rational cascading of standard elements opens the possibility to implement complex behaviours in vitro. Because of the simple and well‐controlled environment, the corresponding chemical network is easily amenable to quantitative mathematical analysis. These synthetic systems may thus accelerate our understanding of the underlying principles of biological dynamic modules.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Bottom-up construction of in vitro switchable memories

Adrien Padirac; Teruo Fujii; Yannick Rondelez

Reaction networks displaying bistability provide a chemical mechanism for long-term memory storage in cells, as exemplified by many epigenetic switches. These biological systems are not only bistable but switchable, in the sense that they can be flipped from one state to the other by application of specific molecular stimuli. We have reproduced such functions through the rational assembly of dynamic reaction networks based on basic DNA biochemistry. Rather than rewiring genetic systems as synthetic biology does in vivo, our strategy consists of building simplified dynamic analogs in vitro, in an artificial, well-controlled milieu. We report successively a bistable system, a two-input switchable memory element, and a single-input push-push memory circuit. These results suggest that it is possible to build complex time-responsive molecular circuits by following a modular approach to the design of dynamic in vitro behaviors. Our approach thus provides an unmatched opportunity to study topology/function relationships within dynamic reaction networks.


ACS Nano | 2013

Predator–Prey Molecular Ecosystems

Teruo Fujii; Yannick Rondelez

Biological organisms use intricate networks of chemical reactions to control molecular processes and spatiotemporal organization. In turn, these living systems are embedded in self-organized structures of larger scales, for example, ecosystems. Synthetic in vitro efforts have reproduced the architectures and behaviors of simple cellular circuits. However, because all these systems share the same dynamic foundations, a generalized molecular programming strategy should also support complex collective behaviors, as seen, for example, in animal populations. We report here the bottom-up assembly of chemical systems that reproduce in vitro the specific dynamics of ecological communities. We experimentally observed unprecedented molecular behaviors, including predator-prey oscillations, competition-induced chaos, and symbiotic synchronization. These synthetic systems are tailored through a novel, compact, and versatile design strategy, leveraging the programmability of DNA interactions under the precise control of enzymatic catalysis. Such self-organizing assemblies will foster a better appreciation of the molecular origins of biological complexity and may also serve to orchestrate complex collective operations of molecular agents in technological applications.


Journal of the American Chemical Society | 2013

Spatial Waves in Synthetic Biochemical Networks

Adrien Padirac; Teruo Fujii; André Estevez-Torres; Yannick Rondelez

We report the experimental observation of traveling concentration waves and spirals in a chemical reaction network built from the bottom up. The mechanism of the network is an oscillator of the predator-prey type, and this is the first time that predator-prey waves have been observed in the laboratory. The molecular encoding of the nonequilibrium behavior relies on small DNA oligonucleotides that enforce the network connectivity and three purified enzymes that control the reactivity. Wave velocities in the range 80-400 μm min(-1) were measured. A reaction-diffusion model in quantitative agreement with the experiments is proposed. Three fundamental parameters are easy to tune in nucleic acid reaction networks: the topology of the network, the rate constants of the individual reactions, and the diffusion coefficients of the individual species. For this reason, we expect such networks to bring unprecedented opportunities for assaying the principles of spatiotemporal order formation in chemistry.


Chemistry: A European Journal | 2000

Biomimetic Copper(I)–CO Complexes: A Structural and Dynamic Study of a Calix[6]arene-Based Supramolecular System

Yannick Rondelez; Olivier Sénèque; Marie-Noëlle Rager; Arthur F. Duprat; Olivia Reinaud

Four novel calix[6]arene-based cuprous complexes are described. They present a biomimetic tris(imidazole) coordination core associated with a hydrophobic cavity that wraps the apical binding site. Each differs from the other by the methyl or ethyl substituents present on the phenoxyl groups (OR1) and on the imidazole arms (NR2) of the calix[6]arene structure. In solution, stable CO complexes were obtained. We have investigated their geometrical and dynamic properties with respect to the steric demand. IR and NMR studies revealed that, in solution, these complexes adopted two distinct conformations. The preferred conformation was dictated only by the size of the OR1 group. When R1 was an ethyl group, the complex preferentially adopted a flattened C3-symmetrical structure. The corresponding helical enantiomers were in conformational equilibrium, which, however, was slow on the 1H NMR time scale at -80 degrees C. When R1 was a methyl group, the low-temperature NMR spectra revealed the partial inclusion of one tBu group. The complex wobbled between three dissymmetric but equivalent conformations. Hence, small differences in the steric demand of the calixarenes skeleton changed the geometry and dynamics of the system. Indeed, this supramolecular control was promoted by the strong conformational coupling between the metal center and the host structure. Interestingly, this was not only the result of a covalent preorganization, but also stemmed from weak interactions within the hydrophobic pocket. The vibrational spectra of the bound CO were revealed to be a sensitive gauge of this supramolecular behavior, similar to copper proteins in which allosteric effects are common.


European Journal of Inorganic Chemistry | 2001

Calix[6]arene-BasedN3-Donors − A Versatile Supramolecular System with Tunable Electronic and Steric Properties − Study on the Formation of Tetrahedral Dicationic Zinc Complexes in a Biomimetic Environment

Olivier Sénèque; Yannick Rondelez; Loïc Le Clainche; Claude Inisan; Marie-Noëlle Rager; Michel Giorgi; Olivia Reinaud

Novel tridentate N-ligands containing tertiary amines, pyrazoles, or benzimidazole groups were synthesized from tBu-calix[6]arene. Together with the previously described pyridine and imidazole-based ligands, they form a large family of biomimetic ligands (X6Me3N3) with different electronic and steric properties. Their capacity at stabilizing a tetrahedral Zn dicationic center in acetonitrile was investigated. Tertiary amines were too basic and sterically hindered, leading to precipitation of Zn(OH)2. The resulting protonated ligand was, in one case, structurally characterized by X-ray analysis. Ligands with pyrazole, benzimidazole and imidazole donors, all formed a stable Zn complex under stoichiometric conditions in acetonitrile. An 1H NMR spectroscopic study together with X-ray crystallography showed that the metal ion is coordinated to the three nitrogen arms with MeCN as a fourth ligand included in the calixarene conic pocket. These complexes provide new but rare examples of stable dicationic tetrahedral Zn species. The calixarene functionalized by three pyridine groups, on the other hand, did not appear to be a good ligand, which stands in contrast with its remarkable ability at stabilizing copper(I). Finally, these funnel complexes are chiral due to their helical shape. In solution, both enantiomers are in equilibrium. However, sterically hindered N-donors increased the enantiomerization barrier above 16 kcal/mol.


Current Opinion in Biotechnology | 2013

Nucleic acids for the rational design of reaction circuits

Adrien Padirac; Teruo Fujii; Yannick Rondelez

Nucleic acid-based circuits are rationally designed in vitro assemblies that can perform complex preencoded programs. They can be used to mimic in silico computations. Recent works emphasized the modularity and robustness of these circuits, which allow their scaling-up. Another new development has led to dynamic, time-responsive systems that can display emergent behaviors like oscillations. These are closely related to biological architectures and provide an in vitro model of in vivo information processing. Nucleic acid circuits have already been used to handle various processes for technological or biotechnological purposes. Future applications of these chemical smart systems will benefit from the rapidly growing ability to design, construct, and model nucleic acid circuits of increasing size.


Journal of the Royal Society Interface | 2013

Scaling down DNA circuits with competitive neural networks

Anthony J. Genot; Teruo Fujii; Yannick Rondelez

DNA has proved to be an exquisite substrate to compute at the molecular scale. However, nonlinear computations (such as amplification, comparison or restoration of signals) remain costly in term of strands and are prone to leak. Kim et al. showed how competition for an enzymatic resource could be exploited in hybrid DNA/enzyme circuits to compute a powerful nonlinear primitive: the winner-take-all (WTA) effect. Here, we first show theoretically how the nonlinearity of the WTA effect allows the robust and compact classification of four patterns with only 16 strands and three enzymes. We then generalize this WTA effect to DNA-only circuits and demonstrate similar classification capabilities with only 23 strands.

Collaboration


Dive into the Yannick Rondelez's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

André Estevez-Torres

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Olivia Reinaud

Paris Descartes University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge