Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yanwu Zhu is active.

Publication


Featured researches published by Yanwu Zhu.


Nano Letters | 2008

Graphene-Based Ultracapacitors

Meryl D. Stoller; Sungjin Park; Yanwu Zhu; Jinho An; Rodney S. Ruoff

The surface area of a single graphene sheet is 2630 m(2)/g, substantially higher than values derived from BET surface area measurements of activated carbons used in current electrochemical double layer capacitors. Our group has pioneered a new carbon material that we call chemically modified graphene (CMG). CMG materials are made from 1-atom thick sheets of carbon, functionalized as needed, and here we demonstrate in an ultracapacitor cell their performance. Specific capacitances of 135 and 99 F/g in aqueous and organic electrolytes, respectively, have been measured. In addition, high electrical conductivity gives these materials consistently good performance over a wide range of voltage scan rates. These encouraging results illustrate the exciting potential for high performance, electrical energy storage devices based on this new class of carbon material.


Advanced Materials | 2010

Graphene and Graphene Oxide: Synthesis, Properties, and Applications

Yanwu Zhu; Shanthi Murali; Weiwei Cai; Xuesong Li; Ji Won Suk; Jeffrey R. Potts; Rodney S. Ruoff

There is intense interest in graphene in fields such as physics, chemistry, and materials science, among others. Interest in graphenes exceptional physical properties, chemical tunability, and potential for applications has generated thousands of publications and an accelerating pace of research, making review of such research timely. Here is an overview of the synthesis, properties, and applications of graphene and related materials (primarily, graphite oxide and its colloidal suspensions and materials made from them), from a materials science perspective.


Science | 2011

Carbon-Based Supercapacitors Produced by Activation of Graphene

Yanwu Zhu; Shanthi Murali; Meryl D. Stoller; K. J. Ganesh; Weiwei Cai; Paulo J. Ferreira; Adam Pirkle; Robert M. Wallace; Katie A. Cychosz; Matthias Thommes; Dong Su; Eric A. Stach; Rodney S. Ruoff

Activated microwave-exfoliated graphite oxide combined with an ionic liquid can be used to make an enhanced capacitor. Supercapacitors, also called ultracapacitors or electrochemical capacitors, store electrical charge on high-surface-area conducting materials. Their widespread use is limited by their low energy storage density and relatively high effective series resistance. Using chemical activation of exfoliated graphite oxide, we synthesized a porous carbon with a Brunauer-Emmett-Teller surface area of up to 3100 square meters per gram, a high electrical conductivity, and a low oxygen and hydrogen content. This sp2-bonded carbon has a continuous three-dimensional network of highly curved, atom-thick walls that form primarily 0.6- to 5-nanometer-width pores. Two-electrode supercapacitor cells constructed with this carbon yielded high values of gravimetric capacitance and energy density with organic and ionic liquid electrolytes. The processes used to make this carbon are readily scalable to industrial levels.


Nano Letters | 2009

Transfer of Large-Area Graphene Films for High-Performance Transparent Conductive Electrodes

Xuesong Li; Yanwu Zhu; Weiwei Cai; Mark Borysiak; Boyang Han; David J. Chen; Richard D. Piner; Luigi Colombo; Rodney S. Ruoff

Graphene, a two-dimensional monolayer of sp(2)-bonded carbon atoms, has been attracting great interest due to its unique transport properties. One of the promising applications of graphene is as a transparent conductive electrode owing to its high optical transmittance and conductivity. In this paper, we report on an improved transfer process of large-area graphene grown on Cu foils by chemical vapor deposition. The transferred graphene films have high electrical conductivity and high optical transmittance that make them suitable for transparent conductive electrode applications. The improved transfer processes will also be of great value for the fabrication of electronic devices such as field effect transistor and bilayer pseudospin field effect transistor devices.


ACS Nano | 2011

Nanostructured Reduced Graphene Oxide/Fe2O3 Composite As a High-Performance Anode Material for Lithium Ion Batteries

Xianjun Zhu; Yanwu Zhu; Shanthi Murali; Meryl D. Stoller; Rodney S. Ruoff

Reduced graphene oxide/Fe(2)O(3) composite was prepared using a facile two-step synthesis by homogeneous precipitation and subsequent reduction of the G-O with hydrazine under microwave irradiation to yield reduced graphene oxide (RG-O) platelets decorated with Fe(2)O(3) nanoparticles. As an anode material for Li-ion batteries, the RG-O/Fe(2)O(3) composite exhibited discharge and charge capacities of 1693 and 1227 mAh/g, respectively, normalized to the mass of Fe(2)O(3) in the composite (and ∼1355 and 982 mAh/g, respectively, based on the total mass of the composite), with good cycling performance and rate capability. Characterization shows that the Fe(2)O(3) nanoparticles are uniformly distributed on the surface of the RG-O platelets in the composite. The total specific capacity of RG-O/Fe(2)O(3) is higher than the sum of pure RG-O and nanoparticle Fe(2)O(3), indicating a positive synergistic effect of RG-O and Fe(2)O(3) on the improvement of electrochemical performance. The synthesis approach presents a promising route for a large-scale production of RG-O platelet/metal oxide nanoparticle composites as electrode materials for Li-ion batteries.


Nano Letters | 2010

Graphene Films with Large Domain Size by a Two-Step Chemical Vapor Deposition Process

Xuesong Li; Carl W. Magnuson; Archana Venugopal; Jinho An; Ji Won Suk; Boyang Han; Mark Borysiak; Weiwei Cai; Aruna Velamakanni; Yanwu Zhu; Lianfeng Fu; Eric M. Vogel; Edgar Voelkl; Luigi Colombo; Rodney S. Ruoff

The fundamental properties of graphene are making it an attractive material for a wide variety of applications. Various techniques have been developed to produce graphene and recently we discovered the synthesis of large area graphene by chemical vapor deposition (CVD) of methane on Cu foils. We also showed that graphene growth on Cu is a surface-mediated process and the films were polycrystalline with domains having an area of tens of square micrometers. In this paper, we report on the effect of growth parameters such as temperature, and methane flow rate and partial pressure on the growth rate, domain size, and surface coverage of graphene as determined by Raman spectroscopy, and transmission and scanning electron microscopy. On the basis of the results, we developed a two-step CVD process to synthesize graphene films with domains having an area of hundreds of square micrometers. Scanning electron microscopy and Raman spectroscopy clearly show an increase in domain size by changing the growth parameters. Transmission electron microscopy further shows that the domains are crystallographically rotated with respect to each other with a range of angles from about 13 to nearly 30°. Electrical transport measurements performed on back-gated FETs show that overall films with larger domains tend to have higher carrier mobility up to about 16,000 cm(2) V(-1) s(-1) at room temperature.


Nano Letters | 2012

Highly Conductive and Porous Activated Reduced Graphene Oxide Films for High-Power Supercapacitors

Li Li Zhang; Xin Zhao; Meryl D. Stoller; Yanwu Zhu; Hengxing Ji; Shanthi Murali; Yaping Wu; Stephen Perales; Brandon Clevenger; Rodney S. Ruoff

We present a novel method to prepare highly conductive, free-standing, and flexible porous carbon thin films by chemical activation of reduced graphene oxide paper. These flexible carbon thin films possess a very high specific surface area of 2400 m(2) g(-1) with a high in-plane electrical conductivity of 5880 S m(-1). This is the highest specific surface area for a free-standing carbon film reported to date. A two-electrode supercapacitor using these carbon films as electrodes demonstrated an excellent high-frequency response, an extremely low equivalent series resistance on the order of 0.1 ohm, and a high-power delivery of about 500 kW kg(-1). While higher frequency and power values for graphene materials have been reported, these are the highest values achieved while simultaneously maintaining excellent specific capacitances and energy densities of 120 F g(-1) and 26 W h kg(-1), respectively. In addition, these free-standing thin films provide a route to simplify the electrode-manufacturing process by eliminating conducting additives and binders. The synthetic process is also compatible with existing industrial level KOH activation processes and roll-to-roll thin-film fabrication technologies.


Nano Letters | 2010

Thermal Transport in Suspended and Supported Monolayer Graphene Grown by Chemical Vapor Deposition

Weiwei Cai; Arden L. Moore; Yanwu Zhu; Xuesong Li; Shanshan Chen; Li Shi; Rodney S. Ruoff

Graphene monolayer has been grown by chemical vapor deposition on copper and then suspended over a hole. By measuring the laser heating and monitoring the Raman G peak, we obtain room-temperature thermal conductivity and interface conductance of (370 + 650/-320) W/m K and (28 + 16/-9.2) MW/m(2) K for the supported graphene. The thermal conductivity of the suspended graphene exceeds (2500 + 1100/-1050) W/m K near 350 K and becomes (1400 + 500/-480) W/m K at about 500 K.


ACS Nano | 2010

Exfoliation of graphite oxide in propylene carbonate and thermal reduction of the resulting graphene oxide platelets

Yanwu Zhu; Meryl D. Stoller; Weiwei Cai; Aruna Velamakanni; Richard D. Piner; David J. Chen; Rodney S. Ruoff

Graphite oxide was exfoliated and dispersed in propylene carbonate (PC) by bath sonication. Heating the graphene oxide suspensions at 150 degrees C significantly reduced the graphene oxide platelets; paper samples comprising such reduced graphene oxide platelets had an electrical conductivity of 5230 S/m. By adding tetraethylammonium tetrafluoroborate (TEA BF(4)) to the reduced graphene oxide/PC slurry and making a two-cell ultracapacitor, specific capacitance values of about 120 F/g were obtained.


Applied Physics Letters | 2003

Efficient field emission from ZnO nanoneedle arrays

Yanwu Zhu; Hongzhou Zhang; Xiaoxiao Sun; S.Q. Feng; J. Xu; Qing-Tai Zhao; Bin Xiang; Rongming Wang; Dapeng Yu

Well-aligned arrays of ZnO nanoneedles were fabricated using a simple vapor phase growth. The diameters of the nanoneedle tips are as small as several nanometers, which is highly in favor of the field emission. Field-emission measurements using the nanoneedle arrays as cathode showed emission current density as high as 2.4 mA/cm2 under the field of 7 V/μm, and a very low turn-on field of 2.4 V/μm. Such a high emission current density is attributed to the high aspect ratio of the nanoneedles. The high emission current density, high stability, and low turn-on field make the ZnO nanoneedle arrays one of the promising candidates for field-emission displays.

Collaboration


Dive into the Yanwu Zhu's collaboration.

Top Co-Authors

Avatar

Rodney S. Ruoff

Ulsan National Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Chorng Haur Sow

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar

Hengxing Ji

University of Science and Technology of China

View shared research outputs
Top Co-Authors

Avatar

Shanthi Murali

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar

Chwee Teck Lim

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar

Yuan Zhao

University of Science and Technology of China

View shared research outputs
Top Co-Authors

Avatar

Meryl D. Stoller

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar

Guanxiong Chen

University of Science and Technology of China

View shared research outputs
Top Co-Authors

Avatar

Kun Ni

University of Science and Technology of China

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge