Hengxing Ji
University of Science and Technology of China
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Hengxing Ji.
Nano Letters | 2012
Li Li Zhang; Xin Zhao; Meryl D. Stoller; Yanwu Zhu; Hengxing Ji; Shanthi Murali; Yaping Wu; Stephen Perales; Brandon Clevenger; Rodney S. Ruoff
We present a novel method to prepare highly conductive, free-standing, and flexible porous carbon thin films by chemical activation of reduced graphene oxide paper. These flexible carbon thin films possess a very high specific surface area of 2400 m(2) g(-1) with a high in-plane electrical conductivity of 5880 S m(-1). This is the highest specific surface area for a free-standing carbon film reported to date. A two-electrode supercapacitor using these carbon films as electrodes demonstrated an excellent high-frequency response, an extremely low equivalent series resistance on the order of 0.1 ohm, and a high-power delivery of about 500 kW kg(-1). While higher frequency and power values for graphene materials have been reported, these are the highest values achieved while simultaneously maintaining excellent specific capacitances and energy densities of 120 F g(-1) and 26 W h kg(-1), respectively. In addition, these free-standing thin films provide a route to simplify the electrode-manufacturing process by eliminating conducting additives and binders. The synthetic process is also compatible with existing industrial level KOH activation processes and roll-to-roll thin-film fabrication technologies.
Nano Letters | 2012
Hengxing Ji; Lili Zhang; Michael T. Pettes; Huifeng Li; Shanshan Chen; Li Shi; Richard D. Piner; Rodney S. Ruoff
We report the use of free-standing, lightweight, and highly conductive ultrathin graphite foam (UGF), loaded with lithium iron phosphate (LFP), as a cathode in a lithium ion battery. At a high charge/discharge current density of 1280 mA g(-1), the specific capacity of the LFP loaded on UGF was 70 mAh g(-1), while LFP loaded on Al foil failed. Accounting for the total mass of the electrode, the maximum specific capacity of the UGF/LFP cathode was 23% higher than that of the Al/LFP cathode and 170% higher than that of the Ni-foam/LFP cathode. Using UGF, both a higher rate capability and specific capacity can be achieved simultaneously, owing to its conductive (∼1.3 × 10(5) S m(-1) at room temperature) and three-dimensional lightweight (∼9.5 mg cm(-3)) graphitic structure. Meanwhile, UGF presents excellent electrochemical stability comparing to that of Al and Ni foils, which are generally used as conductive substrates in lithium ion batteries. Moreover, preparation of the UGF electrode was facile, cost-effective, and compatible with various electrochemically active materials.
Advanced Materials | 2011
Fei-Fei Cao; Junwen Deng; Sen Xin; Hengxing Ji; Oliver G. Schmidt; Li-Jun Wan; Yu-Guo Guo
There is a surge in developing rechargeable lithium-ion batteries (LIBs) with higher energy densities and higher rate performance for application in powering future advanced communications equipment and electric vehicles (EVs). [ 1–6 ] The development of the electrode materials is essential for the improvement of the electrochemical properties of LIBs. [ 7–10 ] Among various anode materials tested for LIBs, Si has triggered signifi cant research effort because of its low Li-uptake potential and the high theoretical capacity (4200 mA h g − 1 ). [ 6 , 11–19 ] However, the main disadvantage that restricts the application of Si is the large volume changes of Si during Li + insertion and extraction, which results in a pulverization of the Si particles, a peeling off the current connection network, and, consequently, a rapid capacity decline upon cycling. [ 11–17 ] To overcome this issue, Si nanostructures, such as Si nanowires and nanotubes, have been fabricated. [ 6 , 11 , 18–23 ] The procedures for the fabrication of the Si nanostructures have also been well developed. [ 24–26 ] These nanostructures can provide spaces to accommodate the large volume variation during charge and discharge processes and thus allow for facile strain relaxation, which prevents pulverization upon lithium insertion. [ 11–19 , 27 ] The cycle stability of the Si anode has been signifi cantly improved by using these nanostructures. [ 11–17 , 27 ] Nevertheless, the rate capability of these materials highly needed for EVs is still not satisfying. This is possibly due to the lack of favorable electronic conductivity and the continuous growth of the unstable solid electrolyte interphase (SEI) at the Si/electrolyte interface upon cycling. Therefore, a new design for the structure of the Si anode is in high demand to achieve both longer cycling life and higher rate capability. Our previous work suggested that the application of nanocable structures in LIBs electrodes can signifi cantly improve the batteries’ electrochemical performance, especially the high
Nature Communications | 2014
Hengxing Ji; Xin Zhao; Zhenhua Qiao; Jeil Jung; Yanwu Zhu; Yalin Lu; Li Li Zhang; A. H. MacDonald; Rodney S. Ruoff
Experimental electrical double-layer capacitances of porous carbon electrodes fall below ideal values, thus limiting the practical energy densities of carbon-based electrical double-layer capacitors. Here we investigate the origin of this behaviour by measuring the electrical double-layer capacitance in one to five-layer graphene. We find that the capacitances are suppressed near neutrality, and are anomalously enhanced for thicknesses below a few layers. We attribute the first effect to quantum capacitance effects near the point of zero charge, and the second to correlations between electrons in the graphene sheet and ions in the electrolyte. The large capacitance values imply gravimetric energy storage densities in the single-layer graphene limit that are comparable to those of batteries. We anticipate that these results shed light on developing new theoretical models in understanding the electrical double-layer capacitance of carbon electrodes, and on opening up new strategies for improving the energy density of carbon-based capacitors.
Advanced Materials | 2013
Junyi Ji; Hengxing Ji; Li Li Zhang; Xin Zhao; Xin Bai; Xiaobin Fan; Fengbao Zhang; Rodney S. Ruoff
A Si/graphene composite is drop-casted on an ultrathin-graphite foam (UGF) with three dimensional conductive network. The Si/graphene/UGF composite presents excellent stability and relatively high overall capacity when tested as an anode for rechargeable lithium ion batteries.
Energy and Environmental Science | 2012
Li Li Zhang; Xin Zhao; Hengxing Ji; Meryl D. Stoller; Linfei Lai; Shanthi Murali; Stephen McDonnell; Brandon Cleveger; Robert M. Wallace; Rodney S. Ruoff
Many researchers have used nitrogen (N) as a dopant and/or N-containing functional groups to enhance the capacitance of carbon electrodes of electrical double layer (EDL) capacitors. However, the physical mechanism(s) giving rise to the interfacial capacitance of the N-containing carbon electrodes is not well understood. Here, we show that the area-normalized capacitance of lightly N-doped activated graphene with similar porous structure increased from 6 μF cm−2 to 22 μF cm−2 with 0 at%, and 2.3 at% N-doping, respectively. The quantum capacitance of pristine single layer graphene and various N-doped graphene was measured and a trend of upwards shifts of the Dirac Point with increasing N concentration was observed. The increase in bulk capacitance with increasing N concentration, and the increase of the quantum capacitance in the N-doped monolayer graphene versus pristine monolayer graphene suggests that the increase in the EDL type of capacitance of many, if not all, N-doped carbon electrodes studied to date, is primarily due to the modification of the electronic structure of the graphene by the N dopant. It was further found that the quantum capacitance is closely related to the N dopant concentration and N-doping provides an effective way to increase the density of the states of monolayer graphene.
Nano Letters | 2012
Michael T. Pettes; Hengxing Ji; Rodney S. Ruoff; Li Shi
At a very low solid concentration of 0.45 ± 0.09 vol %, the room-temperature thermal conductivity (κ(GF)) of freestanding graphene-based foams (GF), comprised of few-layer graphene (FLG) and ultrathin graphite (UG) synthesized through the use of methane chemical vapor deposition on reticulated nickel foams, was increased from 0.26 to 1.7 W m(-1) K(-1) after the etchant for the sacrificial nickel support was changed from an aggressive hydrochloric acid solution to a slow ammonium persulfate etchant. In addition, κ(GF) showed a quadratic dependence on temperature between 11 and 75 K and peaked at about 150 K, where the solid thermal conductivity (κ(G)) of the FLG and UG constituents reached about 1600 W m(-1) K(-1), revealing the benefit of eliminating internal contact thermal resistance in the continuous GF structure.
Advanced Materials | 2013
Shanshan Chen; Hengxing Ji; Harry Chou; Qiongyu Li; Hongyang Li; Ji Won Suk; Richard D. Piner; Lei Liao; Weiwei Cai; Rodney S. Ruoff
Millimeter-size single-crystal monolayer graphene is synthesized on polycrystalline Cu foil by a method that involves suppressing loss by evaporation of the Cu at high temperature under low pressure. This significantly diminishes the number of graphene domains, and large single crystal domains up to ∼2 mm in size are grown.
Energy and Environmental Science | 2014
Hengxing Ji; Daniel P. Sellan; Michael T. Pettes; Xianghua Kong; Junyi Ji; Li Shi; Rodney S. Ruoff
For thermophysical energy storage with phase change materials (PCMs), the power capacity is often limited by the low PCM thermal conductivity (κPCM). Though dispersing high-thermal conductivity nanotubes and graphene flakes increases κPCM, the enhancement is limited by interface thermal resistance between the nanofillers, among other factors such as detrimental surface scattering of phonons. Here, we demonstrate that embedding continuous ultrathin-graphite foams (UGFs) with volume fractions as low as 0.8–1.2 vol% in a PCM can increase κPCM by up to 18 times, with negligible change in the PCM melting temperature or mass specific heat of fusion. The increase in κPCM, thermal cycling stability, and applicability to a diverse range of PCMs suggests that UGF composites are a promising route to achieving the high power capacity targets of a number of thermal storage applications, including building and vehicle heating and cooling, solar thermal harvesting, and thermal management of electrochemical energy storage and electronic devices.
ACS Nano | 2012
Bin Zhang; Wi Hyoung Lee; Richard D. Piner; Iskandar Kholmanov; Yaping Wu; Huifeng Li; Hengxing Ji; Rodney S. Ruoff
A two-step CVD route with toluene as the carbon precursor was used to grow continuous large-area monolayer graphene films on a very flat, electropolished Cu foil surface at 600 °C, lower than any temperature reported to date for growing continuous monolayer graphene. Graphene coverage is higher on the surface of electropolished Cu foil than that on the unelectropolished one under the same growth conditions. The measured hole and electron mobilities of the monolayer graphene grown at 600 °C were 811 and 190 cm(2)/(V·s), respectively, and the shift of the Dirac point was 18 V. The asymmetry in carrier mobilities can be attributed to extrinsic doping during the growth or transfer. The optical transmittance of graphene at 550 nm was 97.33%, confirming it was a monolayer, and the sheet resistance was ~8.02 × 10(3) Ω/□.