Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yanyan Gong is active.

Publication


Featured researches published by Yanyan Gong.


Marine Pollution Bulletin | 2014

A review of oil, dispersed oil and sediment interactions in the aquatic environment: Influence on the fate, transport and remediation of oil spills

Yanyan Gong; Xiao Zhao; Zhengqing Cai; S.E. O’Reilly; Xiaodi Hao; Dongye Zhao

The 2010 Deepwater Horizon oil spill has spurred significant amounts of researches on fate, transport, and environmental impacts of oil and oil dispersants. This review critically summarizes what is understood to date about the interactions between oil, oil dispersants and sediments, their roles in developing oil spill countermeasures, and how these interactions may change in deepwater environments. Effects of controlling parameters, such as sediment particle size and concentration, organic matter content, oil properties, and salinity on oil-sediment interactions are described in detail. Special attention is placed to the application and effects of oil dispersants on the rate and extent of the interactions between oil and sediment or suspended particulate materials. Various analytical methods are discussed for characterization of oil-sediment interactions. Current knowledge gaps are identified and further research needs are proposed to facilitate sounder assessment of fate and impacts of oil spills in the marine environment.


Bioresource Technology | 2015

Preparation and characterization of a novel graphene/biochar composite for aqueous phenanthrene and mercury removal.

Jingchun Tang; Honghong Lv; Yanyan Gong; Yao Huang

A graphene/biochar composite (G/BC) was synthesized via slow pyrolysis of graphene (G) pretreated wheat straw, and tested for the sorption characteristics and mechanisms of representative aqueous contaminants (phenanthrene and mercury). Structure and morphology analysis showed that G was coated on the surface of biochar (BC) mainly through π-π interactions, resulting in a larger surface area, more functional groups, greater thermal stability, and higher removal efficiency of phenanthrene and mercury compared to BC. Pseudo second-order model adequately simulated sorption kinetics, and sorption isotherms of phenanthrene and mercury were simulated well by dual-mode and BET models, respectively. FTIR and SEM analysis suggested that partitioning and surface sorption were dominant mechanisms for phenanthrene sorption, and that surface complexation between mercury and C-O, CC, -OH, and OC-O functional groups was responsible for mercury removal. The results suggested that the G/BC composite is an efficient, economic, and environmentally friendly multifunctional adsorbent for environmental remediation.


Environmental Science & Technology | 2014

Immobilization of Mercury by Carboxymethyl Cellulose Stabilized Iron Sulfide Nanoparticles: Reaction Mechanisms and Effects of Stabilizer and Water Chemistry

Yanyan Gong; Yuanyuan Liu; Zhong Xiong; Dongye Zhao

Iron sulfide (FeS) nanoparticles were prepared with sodium carboxymethyl cellulose (CMC) as a stabilizer, and tested for enhanced removal of aqueous mercury (Hg(2+)). CMC at ≥0.03 wt % fully stabilized 0.5 g/L of FeS (i.e., CMC-to-FeS molar ratio ≥0.0006). FTIR spectra suggested that CMC molecules were attached to the nanoparticles through bidentate bridging and hydrogen bonding. Increasing the CMC-to-FeS molar ratio from 0 to 0.0006 enhanced mercury sorption capacity by 20%; yet, increasing the ratio from 0.0010 to 0.0025 diminished the sorption by 14%. FTIR and XRD analyses suggested that precipitation (formation of cinnabar and metacinnabar), ion exchange (formation of Hg0.89Fe0.11S), and surface complexation were important mechanisms for mercury removal. A pseudo-second-order kinetic model was able to interpret the sorption kinetics, whereas a dual-mode isotherm model was proposed to simulate the isotherms, which considers precipitation and adsorption. High mercury uptake was observed over the pH range of 6.5-10.5, whereas significant capacity loss was observed at pH < 6. High concentrations of Cl(-) (>106 mg/L) and organic matter (5 mg/L as TOC) modestly inhibited mercury uptake. The immobilized mercury remained stable when preserved for 2.5 years at pH above neutral.


Nanotechnology | 2012

Immobilization of mercury in field soil and sediment using carboxymethyl cellulose stabilized iron sulfide nanoparticles

Yanyan Gong; Yuanyuan Liu; Zhong Xiong; Dawn Samara Kaback; Dongye Zhao

Mercury (Hg) is one of the most pervasive and bio-accumulative metals in the environment. Yet, effective in situ remediation technologies have been lacking. This study investigated the effectiveness of a class of soil-deliverable FeS nanoparticles for in situ immobilization of Hg in two field-contaminated soils from a New Jersey site and one sediment from an Alabama site. The nanoparticles were prepared using sodium carboxymethyl cellulose (CMC) as a stabilizer. Transmission electron microscopy measurements revealed a particle size of 34.3 ± 8.3 nm (standard deviation), whereas dynamic light scattering gave a hydrodynamic diameter of 222.5 ± 3.2 nm. Batch tests showed that at an FeS-to-Hg molar ratio of 28:1-118:1, the nanoparticles reduced water-leachable Hg by 79%-96% and the TCLP (toxicity characteristic leaching procedure) based leachability by 26%-96%. Column breakthrough tests indicated that the nanoparticles were deliverable in the sediment/soil columns under moderate injection pressure. However, once the external pressure was removed, the delivered nanoparticles remained virtually mobile under typical groundwater flow conditions. When the Hg-contaminated soil and sediment were treated with 52-95 pore volumes of a 500 mg l(-1) FeS nanoparticle suspension, water-leachable Hg was reduced by 90%-93% and TCLP-leachable Hg was reduced by 65%-91%. The results warrant further field demonstration of this promising in situ remediation technology.


Water Research | 2016

Application of iron sulfide particles for groundwater and soil remediation: A review.

Yanyan Gong; Jingchun Tang; Dongye Zhao

Rapid industrialization and urbanization have resulted in elevated concentrations of hazardous inorganic and organic contaminants in groundwater and soil, which has become a paramount concern to the environment and the public health. In recent years, iron sulfide (FeS), a major constituent of acid-volatile sulfides, has elicited extensive interests in environmental remediation due to its ubiquitous presence and high treatment efficiency in anoxic environment. This paper provides a comprehensive review on recent advances in: (1) synthesis of FeS particles (including nanoscale FeS); and (2) reactivity of FeS towards a variety of common environmental contaminants in groundwater and soil over extended periods of time, namely, heavy metals (Hg(II), Cu(II), Pb(II), and Cr(VI)), oxyanions (arsenite, arsenate, selenite, and selenate), radionuclides (e.g., uranium (U) and neptunium (Np)), chlorinated organic compounds (e.g., trichloroethane, trichloroethylene, and p-chloroaniline), nitroaromatic compounds, and polychlorinated biphenyls. Different physiochemical and biological methods for preparing FeS with desired particle size, structure, and surface properties are discussed. Reaction principles and removal effectiveness/constraints are discussed in details. Special attention is placed to the application of nanoscale FeS particles because of their unique properties, such as small particle size, large specific surface area, high surface reactivity, and soil deliverability in the subsurface. Moreover, current knowledge gaps and further research needs are identified.


Environmental Science & Technology | 2014

Effects of oil and dispersant on formation of marine oil snow and transport of oil hydrocarbons.

Jie Fu; Yanyan Gong; Xiao Zhao; S.E. O’Reilly; Dongye Zhao

This work explored the formation mechanism of marine oil snow (MOS) and the associated transport of oil hydrocarbons in the presence of a stereotype oil dispersant, Corexit EC9500A. Roller table experiments were carried out to simulate natural marine processes that lead to formation of marine snow. We found that both oil and the dispersant greatly promoted the formation of MOS, and MOS flocs as large as 1.6-2.1 mm (mean diameter) were developed within 3-6 days. Natural suspended solids and indigenous microorganisms play critical roles in the MOS formation. The addition of oil and the dispersant greatly enhanced the bacterial growth and extracellular polymeric substance (EPS) content, resulting in increased flocculation and formation of MOS. The dispersant not only enhanced dissolution of n-alkanes (C9-C40) from oil slicks into the aqueous phase, but facilitated sorption of more oil components onto MOS. The incorporation of oil droplets in MOS resulted in a two-way (rising and sinking) transport of the MOS particles. More lower-molecular-weight (LMW) n-alkanes (C9-C18) were partitioned in MOS than in the aqueous phase in the presence of the dispersant. The information can aid in our understanding of dispersant effects on MOS formation and oil transport following an oil spill event.


Journal of Hazardous Materials | 2016

Preparation of a novel graphene oxide/Fe-Mn composite and its application for aqueous Hg(II) removal

Jingcshun Tang; Yao Huang; Yanyan Gong; Honghong Lyu; Qilin Wang; Jianli Ma

A novel graphene oxide/Fe-Mn (GO/Fe-Mn) composite was synthesized (molar ratio of Fe/Mn=3/1 and mass ratio of Fe/GO=1/7.5) and investigated for the sorption characteristics and mechanisms of aqueous mercury (Hg(2+)) as well as the biological effects to wheat and rice. Characterization tests showed that Fe-Mn oxides were impregnated onto GO sheets in an amorphous form through oxygen-containing functional groups (i.e., CO, epoxy COC, carboxyl OCO, and CO) and π-π interactions. GO/Fe-Mn possessed large surface area, surface enhanced Raman scattering with more sp(3) defects, and greater thermal stability than GO. XPS analysis revealed that Fe2O3, FeOOH, MnO2, MnOOH, and MnO were the dominant metal oxides in GO/Fe-Mn. Pseudo-second-order kinetic model and Sips isotherm model fitted well with the sorption kinetic and isotherm data. The maximum sorption capacity for mercury was 32.9mg/g. Ligand exchange and surface complexation were the dominant mechanisms for mercury removal. GO/Fe-Mn greatly reduced the bioavailability of mercury to wheat and rice, even promoted the seedling growth. This work suggests that GO/Fe-Mn can be used as an effective and environmental-friendly adsorbent in heavy metal remediation.


Marine Pollution Bulletin | 2015

Effects of oil dispersant on solubilization, sorption and desorption of polycyclic aromatic hydrocarbons in sediment-seawater systems.

Xiao Zhao; Yanyan Gong; S.E. O’Reilly; Dongye Zhao

This work investigated effects of a prototype oil dispersant on solubilization, sorption and desorption of three model PAHs in sediment-seawater systems. Increasing dispersant dosage linearly enhanced solubility for all PAHs. Conversely, the dispersant enhanced the sediment uptake of the PAHs, and induced significant desorption hysteresis. Such contrasting effects (adsolubilization vs. solubilization) of dispersant were found dependent of the dispersant concentration and PAH hydrophobicity. The dual-mode models adequately simulated the sorption kinetics and isotherms, and quantified dispersant-enhanced PAH uptake. Sorption of naphthalene and 1-methylnaphthalene by sediment positively correlated with uptake of the dispersant, while sorption of pyrene dropped sharply when the dispersant exceeded its critical micelle concentration (CMC). The deepwater conditions diminished the dispersant effects on solubilization, but enhanced uptake of the PAHs, albeit sorption of the dispersant was lowered. The information may aid in understanding roles of dispersants on distribution, fate and transport of petroleum PAHs in marine systems.


Journal of Hazardous Materials | 2015

Effects of oil dispersants on photodegradation of pyrene in marine water

Yanyan Gong; Jie Fu; S.E. O’Reilly; Dongye Zhao

This work investigated effects of a popular oil dispersant (Corexit EC9500A) on UV- or sunlight-mediated photodegradation of pyrene (a model polycyclic aromatic hydrocarbon) in seawater. The presence of 18 and 180mg/L of the dispersant increased the first-order photodegradation rate by 5.5% and 16.7%, respectively, and reduced or ceased pyrene volatilization. By combining individual first-order rate laws for volatilization and photodegradation, we proposed an integrated kinetic model that can adequately predict the overall dissipation of pyrene from seawater. Mechanistic studies indicated that superoxide radicals played a predominant role in pyrene photodegradation, and the dispersant enhanced formation of superoxide radicals. 1-Hydroxypyrene was the main intermediate regardless of the dispersant, suggesting that electrons were transferred from excited pyrene to oxygen. In the presence of 18mg/L of the dispersant, the photodegradation rate increased with increasing ionic strength and temperature, but decreased with increasing HA concentration, and remained independent of solution pH. The results are important in understanding roles of oil dispersants on environmental fate of persistent oil components in natural and engineered systems.


Scientific Reports | 2016

Role of oxidants in enhancing dewaterability of anaerobically digested sludge through Fe (II) activated oxidation processes: Hydrogen peroxide versus persulfate

Kang Song; Xu Zhou; Yiqi Liu; Yanyan Gong; Beibei Zhou; Dongbo Wang; Qilin Wang

Improving dewaterability of sludge is important for the disposal of sludge in wastewater treatment plants (WWTPs). This study, for the first time, investigated the Fe(II) activated oxidization processes in improving anaerobically digested sludge (ADS) dewaterability. The combination of Fe(II) (0–100 mg/g total solids (TS)) and persulfate (0–1,000 mg/g TS) under neutral pH as well as the combination of Fe(II) (0–100 mg/g TS) and hydrogen peroxide (HP) (0–1,000 mg/g TS) under pH 3.0 were used to examine and compare their effect on the ADS dewaterability enhancement. The highest ADS dewaterability enhancement was attained at 25 mg Fe(II)/g TS and 50 mg HP/g TS, when the CST (CST: the capillary suction time, a sludge dewaterability indicator) was reduced by 95%. In contrast, the highest CST reduction in Fe(II)-persulfate conditioning was 90%, which was obtained at 50 mg Fe(II)/g TS and 250 mg persulfate/g TS. The results showed that Fe(II)-HP conditioning was comparable with Fe(II)-persulfate conditioning in terms of highest CST reduction. Economic analysis suggested that the Fe(II)-HP conditioning was more promising for improving ADS dewaterability compared with Fe(II)-persulfate conditioning, with the saving being up to

Collaboration


Dive into the Yanyan Gong's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

S.E. O’Reilly

United States Minerals Management Service

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge