Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yaohua Yan is active.

Publication


Featured researches published by Yaohua Yan.


Neurochemical Research | 2012

Involvement of CLEC16A in activation of astrocytes after LPS treated.

Xinmin Wu; Jing Li; Chun Chen; Yaohua Yan; Shengyang Jiang; Xiaohong Wu; Bai Shao; Jin Xu; Lihua Kang; Yeqing Huang; Lin Zhu; Yuhong Ji; Yilu Gao

CLEC16A, C-type lectin domain family 16, member A was recently found to be associated with inflation process in the autoimmune diseases. In this study, we elucidated the dynamic expression changes and localization of CLEC16A in lipopolysaccharide (LPS)-induced neuroinflammatory processes in adult rats. CLEC16A expression was strongly induced in active astrocytes in inflamed cerebral cortex. In vitro studies indicated that the up-regulation of CLEC16A may be involved in the subsequent astrocyte activation following LPS challenge. And Knock-down of CLEC16A in cultured primary astrocytes by siRNA showed that CLEC16A was required for the activation of astrocytes induced by LPS. Collectively, these results suggested CLEC16A may be important in host defense in astrocyte-mediated immune response. Understanding the cell signal pathway may provide a novel strategy against inflammatory and immune reaction in neuroinflammtion in CNS.


Neurochemical Research | 2013

The Role of HSPA12B in Regulating Neuronal Apoptosis

Lihua Kang; Guowei Zhang; Yaohua Yan; Kaifu Ke; Xinmin Wu; Yilu Gao; Jing Li; Lin Zhu; Qiyun Wu; Zhengming Zhou

Heat shock protein A12B (HSPA12B) is the newest member of a recently defined subfamily of proteins distantly related to the 70-kDa family of heat shock proteins (HSP70) family. HSP70s play a crucial role in protecting cells, tissues, organs and animals from various noxious conditions. Here we studied the dynamic expression changes and localization of HSPA12B after middle cerebral artery occlusion (MCAO) with reperfusion induced ischemic insult processes in adult rats. Apoptosis, as indicated by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining, was also increased in the peri-ischemic cortex compared to non-ischemic hemisphere. The expression of HSPA12B was strongly induced in the ischemic hemisphere of MCAO reperfusion rats in vivo. In vitro studies indicated that the up-regulation of HSPA12B may be involved in oxygen-glucose deprivation-induced PC12 cell death. And knockdown of HSPA12B in cultured differentiated PC12 cells by siRNA showed that HSPA12B inhibited the expression of active caspase-3. Collectively, these results suggested that HSPA12B may be required for protecting neurons from ischemic insults.


Neurochemical Research | 2015

Up-regulation of VCAM1 Relates to Neuronal Apoptosis After Intracerebral Hemorrhage in Adult Rats

Dongmei Zhang; Damin Yuan; Jianhong Shen; Yaohua Yan; Chen Gong; Jun Gu; Huaqing Xue; Yuhang Qian; Weidong Zhang; Xiaojuan He; Li Yao; Yuhong Ji; Aiguo Shen

AbstractVascular cell adhesion molecule 1 (VCAM1) is a member of the Immunoglobulin superfamily and encodes a cell surface sialoglycoprotein expressed in cytokine-activated endothelium. This type I membrane protein mediates leukocyte-endothelial cell adhesion, facilitates the downstream signaling, and may play a role in the development of artherosclerosis and rheumatoid arthritis. Accumulating evidence has demonstrated that VCAM1 exerts an anti-apoptotic effect in several tumor tissues such as ovarian cancer and breast cancer. Intracerebral hemorrhage (ICH) is the second most common subtype of stroke with high morbidity and mortality, which imposes a big burden on individuals and the whole society. These together prompted us to question whether VCAM1 has some association with neuron apoptosis during the pathological process of ICH. An ICH rat model was established and assessed by behavioral tests in order to explore the role of VCAM1 after ICH. Up-regulation of VCAM1 was observed in brain areas surrounding the hematoma following ICH by western blotting and immunohistochemistry. Immunofluorescence manifested VCAM1 was strikingly increased in neurons, but not in astrocytes and microglia. Furthermore, we detected that neuronal apoptosis marker active caspase-3 had co-localizations with VCAM1. At the same time, Bcl-2 was also co-localized with VCAM1. Taken together, our findings suggested that VCAM1 might be involved in the neuronal apoptosis and pathophysiology of ICH.


Journal of Molecular Histology | 2012

Increased expression of BAG-1 in rat brain cortex after traumatic brain injury

Ting Xu; Xueqian Wang; Maohong Cao; Xinmin Wu; Yaohua Yan; Hongran Fu; Wei Zhao; Peipei Gong; Kaifu Ke; Xingxing Gu

BAG-1 protein was initially identified as a Bcl-2-binding protein. It was reported to enhance Bcl-2 protection from cell death, suggesting that BAG-1 represents a new type of anti-cell death gene. Moreover, recent study has shown that BAG-1 can enhance the proliferation of neuronal precursor cells, attenuate the growth inhibition induced by siah1. However, its function and expression in the central nervous system lesion are not been understood very well. In this study, we performed a traumatic brain injury (TBI) model in adult rats and investigated the dynamic changes of BAG-1 expression in the brain cortex. Double immunofluorescence staining revealed that BAG-1 was co-expressed with NEURON and glial fibrillary acidic protein (GFAP). In addition, we detected that proliferating cell nuclear antigen had the co-localization with GFAP, and BAG-1. All our findings suggested that BAG-1 might involve in the pathophysiology of brain after TBI.


Journal of Molecular Neuroscience | 2015

BTEB2 prevents neuronal apoptosis via promoting bad phosphorylation in rat intracerebral hemorrhage model.

Xiaojuan Liu; Damin Yuan; Xiaoke Nie; Jianhong Shen; Yaohua Yan; Dongmei Zhang; Jianxin Gu

Krüppel-like zinc-finger transcription factor 5 (KLF5), known as BTEB2 or IKLF, has several biological functions that involve cell proliferation, development and apoptosis. Previous studies demonstrated that BTEB2 had anti-apoptotic effect in multiple diseases such as esophageal cancer and non-small cell lung cancers (NSCLCs). However, the distribution and function of BTEB2 in CNS diseases remain unknown. In this study, we show that BTEB2 down-regulates neuronal apoptosis during pathophysiological processes of intracerebral hemorrhage (ICH). A rat ICH model was established by behavioral tests. Western blot and immunohistochemistry revealed a remarkable up-regulation of BTEB2 expression surrounding the hematoma after ICH. Double-labeled immunofluorescence showed BTEB2 was mostly co-localized with neurons, rarely with activated astrocytes and microglia. Furthermore, we detected that neuronal apoptosis marker active caspase-3 had co-localizations with BTEB2. In addition, KLF5 knockdown in vitro specifically resulted in increasing neuronal apoptosis coupled with reduced Bad phosphorylation at both ser112 and ser136 residues. All our findings suggested that BTEB2 down-regulated neuronal apoptosis via promoting Bad phosphorylation after ICH.


Cellular and Molecular Neurobiology | 2014

Up-Regulation of Podoplanin Involves in Neuronal Apoptosis in LPS-Induced Neuroinflammation

Yan Song; Jianhong Shen; Yuchang Lin; Jiabing Shen; Xinming Wu; Yaohua Yan; Li Zhou; Haiyan Zhang; Ying Zhou; Maohong Cao; Yonghua Liu

Podoplanin (PDPN) is a mucin-type transmembrane sialoglycoprotein expressed in multiple tissues in adult animals, including the brain, lungs, kidney, and lymphoid organs. Studies of this molecule have demonstrated its great importance in tumor metastasis, platelet aggregation, and lymphatic vessel formation. However, information regarding its regulation and possible function in the central nervous system is still limited. In this study, we performed a neuroinflammatory model by lipopolysaccharide (LPS) lateral ventral injection in adult rats and detected increased expression of PDPN in the brain cortex. Immunofluorescence indicated that PDPN was located in the neurons, but not astrocytes. Moreover, there was a concomitant up-regulation of active caspase-3, cyclin D1, and CDK4 in vivo and vitro studies. In addition, the expression of these three proteins in cortical primary neurons was decreased after knocking down PDPN by siRNA. Collectively, all these results suggested that the up-regulation of PDPN might be involved in neuronal apoptosis in neuroinflammation after LPS injection.


Cellular and Molecular Neurobiology | 2014

Upregulated Expression of SSTR1 is Involved in Neuronal Apoptosis and is Coupled to the Reduction of bcl-2 Following Intracerebral Hemorrhage in Adult Rats

Damin Yuan; Jianhong Shen; Yaohua Yan; Xinmin Wu; Aihong Li; Aisong Guo; Yuanyuan Wu; Chengwei Duan; Jiabing Shen; Cuiying Tang; Dongmei Zhang; Yuhong Ji

Somatostatins are peptide hormones that regulate diverse cellular processes, such as neurotransmission, cell proliferation, apoptosis, and endocrine signaling as well as inhibiting the release of many hormones and other secretory proteins. SSTR1 is a member of the superfamily of somatostatin receptors possessing seven-transmembrane segments. Aberrant expression of SSTR1 has been implicated in several human diseases, including pseudotumor cerebri, and oncogenic osteomalacia. In this study, we investigated a potential role of SSTR1 in the regulation of neuronal apoptosis in the course of intracerebral hemorrhage (ICH). A rat ICH model in the caudate putamen was established and subjected to behavioral tests. Western blot and immunohistochemistry indicated a remarkable up-regulation of SSTR1 expression surrounding the hematoma after ICH. Double-labeled immunofluorescence showed that SSTR1 was mostly co-localized with neurons, and was rarely distributed in activated astrocytes and microglia. Additionally, SSTR1 co-localized with active-caspase-3 and bcl-2 around the hematoma. The expression of active-caspase-3 was parallel with that of SSTR1 in a time-dependent manner. In addition, SSTR1 knockdown specifically resulted in reduced neuronal apoptosis in PC12 cells. All our findings suggested that up-regulated SSTR1 contributed to neuronal apoptosis after ICH, which was accompanied with reduced expression of bcl-2.


Journal of Neuroscience Research | 2012

Dynamic change of Numbl expression after sciatic nerve crush and its role in Schwann cell differentiation.

Lin Zhu; Yaohua Yan; Kaifu Ke; Xinming Wu; Yilu Gao; Aiguo Shen; Jing Li; Lihua Kang; Guowei Zhang; Qiyun Wu; Huiguang Yang

Numbl, as a conserved homolog of Drosophila Numb, has been implicated in early development of the nervous system, but its expression and roles in nervous system lesion and repair remained unknown. Here, we performed an acute sciatic nerve injury model in adult rats and studied the dynamic changes of Numbl expression in the sciatic nerve. Temporally, Numbl expression was sharply decreased after sciatic nerve crush and reached a valley at day 7. Spatially, Numbl was widely expressed in the normal sciatic nerve, including axons and Schwann cells, whereas, after injury, Numbl expression was decreased predominantly in Schwann cells. In vitro, we induced Schwann cell differentiation with cAMP and found that Numbl expression was decreased in the differentiated process. Depletion of Numbl could promote Schwann cell differentiation. In addition, we demonstrated that in vitro myelination was suppressed by overexpression of Numbl in Schwann cells. Collectively, we hypothesized peripheral nerve injury induced a downregulation of Numbl in the sciatic nerve, which was associated with Schwann cell differentiation.


Journal of Molecular Histology | 2012

Involvement of CtBP2 in LPS-induced microglial activation

Guowei Zhang; Yaohua Yan; Lihua Kang; Qi Cao; Kaifu Ke; Xinmin Wu; Yilu Gao; Qinglei Hang; Chunmiao Li; Lin Zhu; Qin Yuan; Qiyun Wu; Chun Cheng

CtBP2 (C-terminal binding protein 2), which is widely expressed during developmental processes and differentiation, acts as a transcriptional repressor following recruitment to target promoters through repressors or other co-repressor proteins. In this study, we elucidated the dynamic expression changes and localization of CtBP2 in lipopolysaccharide (LPS)-induced neuroinflammatory processes in adult rats. CtBP2 expression was strongly induced in active glia cells (microglia and astrocytes) in inflamed spinal cord. In vitro studies indicated that the up-regulation of CtBP2 may be involved in the subsequent microglia activation following LPS exposure. And the knock-down of CtBP2 in microglia cell line HAPI by siRNA showed that CtBP2 increased the activation of microglia induced by LPS. Collectively, these results suggested CtBP2 may be important in host defense in microglia-mediated immune response. Understanding the cell signal pathway may provide a novel strategy against inflammatory and immune reaction in neuroinflammation in central nervous system.


Neurological Research | 2015

Astrocyte-conditioned medium attenuates glutamate-induced apoptotic cell death in primary cultured spinal cord neurons of rats.

Xiaojian Lu; Rami Al-Aref; Dong Zhao; Jianhong Shen; Yaohua Yan; Yilu Gao

Abstract Objectives: To better understand the neuroprotective role of astrocytes in spinal cord injury (SCI), we investigated whether astrocyte-conditioned medium (ACM) can attenuate glutamate-induced apoptotic cell death in primary cultured spinal cord neurons. Methods: Spinal cord neurons were pretreated with ACM for 24 hours. Subsequently, they were exposed to glutamate (125 μM) for 1 hour. The neurons were then incubated for 24 hours. Following that, measurements assessing cell viability and lactate dehydrogenase (LDH) release were performed. Apoptosis was confirmed through cell morphology using Hoechst 33342 staining and terminal deoxynucleotidyl transferase dUTP-mediated nicked end labeling (TUNEL) assay. Assessment for expression of apoptotic enzymes, including Caspase-3, Bcl-2 and Bax, was performed using Western Blot Analysis. Results: Astrocyte-conditioned medium pretreatment of neurons showed both an increase in spinal cord neuron viability and a decrease in LDH release in a dose-dependent pattern. Moreover, pretreatment seems to attenuate glutamate-induced apoptotic cell death, antagonise glutamate-induced up-regulation of Caspase-3 expression and downregulate Bcl-2/Bax protein expression ratio. Conclusions: By attenuating glutamate-induced apoptotic cell death in primary cultured spinal cord neurons of rats, ACM seems to provide a neuroprotective effect by regulating apoptosis-related protein expression. Our results provide an experimental basis for clinical applications and potential therapeutic use of ACM in SCI.

Collaboration


Dive into the Yaohua Yan's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge