Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yaoliang Tang is active.

Publication


Featured researches published by Yaoliang Tang.


Arteriosclerosis, Thrombosis, and Vascular Biology | 2014

Proinflammatory Phenotype of Perivascular Adipocytes

Abdullah Omar; Tapan K. Chatterjee; Yaoliang Tang; David Y. Hui; Neal L. Weintraub

Perivascular adipose tissue (PVAT) directly abuts the lamina adventitia of conduit arteries and actively communicates with the vessel wall to regulate vascular function and inflammation. Mounting evidence suggests that the biological activities of PVAT are governed by perivascular adipocytes, a unique class of adipocyte with distinct molecular and phenotypic characteristics. Perivascular adipocytes surrounding human coronary arteries (pericoronary perivascular adipocytes) exhibit a reduced state of adipogenic differentiation and a heightened proinflammatory state, secreting ≤50-fold higher levels of the proinflammatory cytokine monocyte chemoattractant peptide-1 compared with adipocytes from other regional depots. Thus, perivascular adipocytes may contribute to upregulated inflammation of PVAT observed in atherosclerotic human blood vessels. However, perivascular adipocytes also secrete anti-inflammatory molecules such as adiponectin, and elimination of PVAT in rodent models has been shown to augment vascular disease, suggesting that some amount of PVAT is required to maintain vascular homeostasis. Evidence in animal models and humans suggests that inflammation of PVAT may be modulated by environmental factors, such as high-fat diet and tobacco smoke, which are relevant to atherosclerosis. These findings suggest that the inflammatory phenotype of PVAT is diverse depending on species, anatomic location, and environmental factors and that these differences are fundamentally important in determining a pathogenic versus protective role of PVAT in vascular disease. Additional research into the mechanisms that regulate the inflammatory balance of perivascular adipocytes may yield new insight into, and treatment strategies for, cardiovascular disease.


International Journal of Molecular Sciences | 2016

Crosstalk between Long Noncoding RNAs and MicroRNAs in Health and Disease

Ahmed S. Bayoumi; Amer Sayed; Zuzana Broskova; Jian Peng Teoh; James Wilson; Huabo Su; Yaoliang Tang; Il Man Kim

Protein-coding genes account for only a small part of the human genome; in fact, the vast majority of transcripts are comprised of non-coding RNAs (ncRNAs) including long ncRNAs (lncRNAs) and small ncRNAs, microRNAs (miRs). Accumulating evidence indicates that ncRNAs could play critical roles in regulating many cellular processes which are often implicated in health and disease. For example, ncRNAs are aberrantly expressed in cancers, heart diseases, and many other diseases. LncRNAs and miRs are therefore novel and promising targets to be developed into biomarkers for diagnosis and prognosis as well as treatment options. The interaction between lncRNAs and miRs as well as its pathophysiological significance have recently been reported. Mechanistically, it is believed that lncRNAs exert “sponge-like” effects on various miRs, which subsequently inhibits miR-mediated functions. This crosstalk between two types of ncRNAs frequently contributes to the pathogenesis of the disease. In this review, we provide a summary of the recent studies highlighting the interaction between these ncRNAs and the effects of this interaction on disease pathogenesis and regulation.


International Journal of Molecular Sciences | 2015

Long Non-Coding RNAs as Master Regulators in Cardiovascular Diseases

Krystal Archer; Zuzana Broskova; Ahmed S. Bayoumi; Jian Peng Teoh; Alec Davila; Yaoliang Tang; Huabo Su; Il-man Kim

Cardiovascular disease is the leading cause of death in the United States, accounting for nearly one in every seven deaths. Over the last decade, various targeted therapeutics have been introduced, but there has been no corresponding improvement in patient survival. Since the mortality rate of cardiovascular disease has not been significantly decreased, efforts have been made to understand the link between heart disease and novel therapeutic targets such as non-coding RNAs. Among multiple non-coding RNAs, long non-coding RNA (lncRNA) has emerged as a novel therapeutic in cardiovascular medicine. LncRNAs are endogenous RNAs that contain over 200 nucleotides and regulate gene expression. Recent studies suggest critical roles of lncRNAs in modulating the initiation and progression of cardiovascular diseases. For example, aberrant lncRNA expression has been associated with the pathogenesis of ischemic heart failure. In this article, we present a synopsis of recent discoveries that link the roles and molecular interactions of lncRNAs to cardiovascular diseases. Moreover, we describe the prevalence of circulating lncRNAs and assess their potential utilities as biomarkers for diagnosis and prognosis of heart disease.


Cardiovascular Research | 2015

MicroRNA-150 protects the mouse heart from ischaemic injury by regulating cell death

Yaoping Tang; Yongchao Wang; Kyoung Mi Park; Qiuping Hu; Jian Peng Teoh; Zuzana Broskova; Punithavathi Ranganathan; Calpurnia Jayakumar; Jie Li; Huabo Su; Yaoliang Tang; Ganesan Ramesh; Il Man Kim

AIMS Cardiac injury is accompanied by dynamic changes in the expression of microRNAs (miRs). For example, miR-150 is down-regulated in patients with acute myocardial infarction, atrial fibrillation, dilated and ischaemic cardiomyopathy as well as in various mouse heart failure (HF) models. Circulating miR-150 has been recently proposed as a better biomarker of HF than traditional clinical markers such as brain natriuretic peptide. We recently showed using the β-arrestin-biased β-blocker, carvedilol that β-arrestin1-biased β1-adrenergic receptor cardioprotective signalling stimulates the processing of miR-150 in the heart. However, the potential role of miR-150 in ischaemic injury and HF is unknown. METHODS AND RESULTS Here, we show that genetic deletion of miR-150 in mice causes abnormalities in cardiac structural and functional remodelling after MI. The cardioprotective roles of miR-150 during ischaemic injury were in part attributed to direct repression of the pro-apoptotic genes egr2 (zinc-binding transcription factor induced by ischaemia) and p2x7r (pro-inflammatory ATP receptor) in cardiomyocytes. CONCLUSION These findings reveal a pivotal role for miR-150 as a regulator of cardiomyocyte survival during cardiac injury.


Arteriosclerosis, Thrombosis, and Vascular Biology | 2014

Transplanted perivascular adipose tissue accelerates injury-induced neointimal hyperplasia: role of monocyte chemoattractant protein-1.

David Manka; Tapan K. Chatterjee; Lynn L. Stoll; Joshua E. Basford; Eddy S. Konaniah; Ramprasad Srinivasan; Vladimir Y. Bogdanov; Yaoliang Tang; Andra L. Blomkalns; David Y. Hui; Neal L. Weintraub

Objective— Perivascular adipose tissue (PVAT) expands during obesity, is highly inflamed, and correlates with coronary plaque burden and increased cardiovascular risk. We tested the hypothesis that PVAT contributes to the vascular response to wire injury and investigated the underlying mechanisms. Approach and Results— We transplanted thoracic aortic PVAT from donor mice fed a high-fat diet to the carotid arteries of recipient high-fat diet–fed low-density lipoprotein receptor knockout mice. Two weeks after transplantation, wire injury was performed, and animals were euthanized 2 weeks later. Immunohistochemistry was performed to quantify adventitial macrophage infiltration and neovascularization and neointimal lesion composition and size. Transplanted PVAT accelerated neointimal hyperplasia, adventitial macrophage infiltration, and adventitial angiogenesis. The majority of neointimal cells in PVAT-transplanted animals expressed &agr;-smooth muscle actin, consistent with smooth muscle phenotype. Deletion of monocyte chemoattractant protein-1 in PVAT substantially attenuated the effects of fat transplantation on neointimal hyperplasia and adventitial angiogenesis, but not adventitial macrophage infiltration. Conditioned medium from perivascular adipocytes induced potent monocyte chemotaxis in vitro and angiogenic responses in cultured endothelial cells. Conclusions— These findings indicate that PVAT contributes to the vascular response to wire injury, in part through monocyte chemoattractant protein-1–dependent mechanisms.


Journal of Molecular and Cellular Cardiology | 2015

A critical role of Src family kinase in SDF-1/CXCR4-mediated bone-marrow progenitor cell recruitment to the ischemic heart

Min Cheng; Kai Huang; Junlan Zhou; Dewen Yan; Yaoliang Tang; Ting C. Zhao; Richard J. Miller; Raj Kishore; Douglas W. Losordo; Gangjian Qin

The G protein-coupled receptor CXCR4 and its ligand stromal-cell derived factor 1 (SDF-1) play a crucial role in directing progenitor cell (PC) homing to ischemic tissue. The Src family protein kinases (SFK) can be activated by, and serve as effectors of, G proteins. In this study we sought to determine whether SFK play a role in SDF-1/CXCR4-mediated PC homing. First, we investigated whether SDF-1/CXCR4 signaling activates SFK. Bone-marrow mononuclear cells (BM MNCs) were isolated from WT and BM-specific CXCR4-KO mice and treated with SDF-1 and/or CXCR4 antagonist AMD3100. SDF-1 treatment rapidly induced phosphorylation (activation) of hematopoietic Src (i.e., Lyn, Fgr, and Hck) in WT cells but not in AMD3100-treated cells or CXCR4-KO cells. Then, we investigated whether SFK are involved in SDF-1/CXCR4-mediated PC chemotaxis. In a combined chemotaxis and endothelial-progenitor-cell (EPC) colony assay, Src inhibitor SU6656 dose-dependently inhibited the SDF-1-induced migration of colony-forming EPCs. Next, we investigated whether SFK play a role in SDF-1/CXCR4-mediated BM PC homing to the ischemic heart. BM MNCs from CXCR4BAC:eGFP reporter mice were i.v. injected into WT and SDF-1BAC:SDF1-RFP transgenic mice following surgically-induced myocardial infarction (MI). eGFP(+) MNCs and eGFP(+)c-kit(+) PCs that were recruited in the infarct border zone in SDF-1BAC:SDF1-RFP recipients were significantly more than that in WT recipients. Treatments of mice with SU6656 significantly reduced eGFP(+) and eGFP(+)c-kit(+) cell recruitment in both WT and SDF-1BAC:RFP recipients and abrogated the difference between the two groups. Remarkably, PCs isolated from BM-specific C-terminal Src kinase (CSK)-KO (Src activated) mice were recruited more efficiently than PCs from WT PCs in the WT recipients. In conclusion, SFK are activated by SDF-1/CXCR4 signaling and play an essential role in SDF-1/CXCR4-mediated BM PC chemotactic response and ischemic cardiac recruitment.


Arteriosclerosis, Thrombosis, and Vascular Biology | 2014

Transplanted Perivascular Adipose Tissue Accelerates Injury-Induced Neointimal Hyperplasia

David Manka; Tapan K. Chatterjee; Lynn L. Stoll; Joshua E. Basford; Eddy S. Konaniah; Ramprasad Srinivasan; Vladimir Y. Bogdanov; Yaoliang Tang; Andra L. Blomkalns; David Y. Hui; Neal L. Weintraub

Objective— Perivascular adipose tissue (PVAT) expands during obesity, is highly inflamed, and correlates with coronary plaque burden and increased cardiovascular risk. We tested the hypothesis that PVAT contributes to the vascular response to wire injury and investigated the underlying mechanisms. Approach and Results— We transplanted thoracic aortic PVAT from donor mice fed a high-fat diet to the carotid arteries of recipient high-fat diet–fed low-density lipoprotein receptor knockout mice. Two weeks after transplantation, wire injury was performed, and animals were euthanized 2 weeks later. Immunohistochemistry was performed to quantify adventitial macrophage infiltration and neovascularization and neointimal lesion composition and size. Transplanted PVAT accelerated neointimal hyperplasia, adventitial macrophage infiltration, and adventitial angiogenesis. The majority of neointimal cells in PVAT-transplanted animals expressed &agr;-smooth muscle actin, consistent with smooth muscle phenotype. Deletion of monocyte chemoattractant protein-1 in PVAT substantially attenuated the effects of fat transplantation on neointimal hyperplasia and adventitial angiogenesis, but not adventitial macrophage infiltration. Conditioned medium from perivascular adipocytes induced potent monocyte chemotaxis in vitro and angiogenic responses in cultured endothelial cells. Conclusions— These findings indicate that PVAT contributes to the vascular response to wire injury, in part through monocyte chemoattractant protein-1–dependent mechanisms.


Cell Cycle | 2014

Inhibition of stearoyl-coA desaturase selectively eliminates tumorigenic Nanog-positive cells: Improving the safety of iPS cell transplantation to myocardium

Lan Zhang; Yaohua Pan; Gangjian Qin; Lijuan Chen; Tapan K. Chatterjee; Neal L. Weintraub; Yaoliang Tang

Induced pluripotent stem cells (iPS) can differentiate into cardiomyocytes (CM) and represent a promising form of cellular therapy for heart regeneration. However, residual undifferentiated iPS derivates (iPSD), which are not fully eliminated by cell differentiation or purification protocols, may form tumors after transplantation, thus compromising therapeutic application. Inhibition of stearoyl-coA desaturase (SCD) has recently been reported to eliminate undifferentiated human embryonic stem cells, which share many features with iPSD. Here, we tested the effects of PluriSin#1, a small-molecule inhibitor of SCD, on iPS-derived CM. We found that plurisin#1 treatment significantly decreased the mRNA and protein level of Nanog, a marker for both cell pluripotency and tumor progression; importantly, we provide evidence that PluriSin#1 treatment at 20 µM for 1 day significantly induces the apoptosis of Nanog-positive iPSD. In addition, PluriSin#1 treatment at 20 µM for 4 days diminished Nanog-positive stem cells in cultured iPSD while not increasing apoptosis of iPS-derived CM. To investigate whether PluriSin#1 treatment prevents tumorigenicity of iPSD after cell transplantation, we intramyocardially injected PluriSin#1- or DMSO-treated iPSD in a mouse model of myocardial infarction (MI). DMSO-treated iPSD readily formed Nanog-expressing tumors 2 weeks after injection, which was prevented by treatment with PluriSin#1. Moreover, treatment with PluriSin#1 did not change the expression of cTnI, α-MHC, or MLC-2v, markers of cardiac differentiation (P > 0.05, n = 4). Importantly, pluriSin#1-treated iPS-derived CM exhibited the ability to engraft and survive in the infarcted myocardium. We conclude that inhibition of SCD holds the potential to enhance the safety of therapeutic application of iPS cells for heart regeneration.


Biomolecules & Therapeutics | 2017

Biased G Protein-Coupled Receptor Signaling: New Player in Modulating Physiology and Pathology

Zuzana Bologna; Jian Peng Teoh; Ahmed S. Bayoumi; Yaoliang Tang; Il Man Kim

G protein-coupled receptors (GPCRs) are a family of cell-surface proteins that play critical roles in regulating a variety of pathophysiological processes and thus are targeted by almost a third of currently available therapeutics. It was originally thought that GPCRs convert extracellular stimuli into intracellular signals through activating G proteins, whereas β-arrestins have important roles in internalization and desensitization of the receptor. Over the past decade, several novel functional aspects of β-arrestins in regulating GPCR signaling have been discovered. These previously unanticipated roles of β-arrestins to act as signal transducers and mediators of G protein-independent signaling have led to the concept of biased agonism. Biased GPCR ligands are able to engage with their target receptors in a manner that preferentially activates only G protein- or β-arrestin-mediated downstream signaling. This offers the potential for next generation drugs with high selectivity to therapeutically relevant GPCR signaling pathways. In this review, we provide a summary of the recent studies highlighting G protein- or β-arrestin-biased GPCR signaling and the effects of biased ligands on disease pathogenesis and regulation.


American Journal of Physiology-heart and Circulatory Physiology | 2016

Carvedilol-responsive microRNAs, miR-199a-3p and -214 protect cardiomyocytes from simulated ischemia-reperfusion injury

Kyoung Mi Park; Jian Peng Teoh; Yongchao Wang; Zuzana Broskova; Ahmed S. Bayoumi; Yaoliang Tang; Huabo Su; Neal L. Weintraub; Il Man Kim

The nonselective β-adrenergic receptor antagonist (β-blocker) carvedilol has been shown to protect against myocardial injury, but the detailed underlying mechanisms are unclear. We recently reported that carvedilol stimulates the processing of microRNA (miR)-199a-3p and miR-214 in the heart via β-arrestin1-biased β1-adrenergic receptor (β1AR) cardioprotective signaling. Here, we investigate whether these β-arrestin1/β1AR-responsive miRs mediate the beneficial effects of carvedilol against simulated ischemia/reperfusion (sI/R). Using cultured cardiomyocyte cell lines and primary cardiomyocytes, we demonstrate that carvedilol upregulates miR-199a-3p and miR-214 in both ventricular and atrial cardiomyocytes subjected to sI/R. Overexpression of the two miRs in cardiomyocytes mimics the effects of carvedilol to activate p-AKT survival signaling and the expression of a downstream pluripotency marker Sox2 in response to sI/R. Moreover, carvedilol-mediated p-AKT activation is abolished by knockdown of either miR-199a-3p or miR-214. Along with previous studies to directly link the cardioprotective actions of carvedilol to upregulation of p-AKT/stem cell markers, our findings suggest that the protective roles of carvedilol during ischemic injury are in part attributed to activation of these two protective miRs. Loss of function of miR-199a-3p and miR-214 also increases cardiomyocyte apoptosis after sI/R. Mechanistically, we demonstrate that miR-199a-3p and miR-214 repress the predictive or known apoptotic target genes ddit4 and ing4, respectively, in cardiomyocytes. These findings suggest pivotal roles for miR-199a-3p and miR-214 as regulators of cardiomyocyte survival and contributors to the functional benefits of carvedilol therapy.

Collaboration


Dive into the Yaoliang Tang's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Il Man Kim

Georgia Regents University

View shared research outputs
Top Co-Authors

Avatar

Gangjian Qin

Northwestern University

View shared research outputs
Top Co-Authors

Avatar

Jian Peng Teoh

Georgia Regents University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ahmed S. Bayoumi

Georgia Regents University

View shared research outputs
Top Co-Authors

Avatar

Huabo Su

Georgia Regents University

View shared research outputs
Top Co-Authors

Avatar

David Y. Hui

University of Cincinnati Academic Health Center

View shared research outputs
Top Co-Authors

Avatar

Yutao Liu

Georgia Regents University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge