Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yaolong Yang is active.

Publication


Featured researches published by Yaolong Yang.


Plant Journal | 2014

SMALL GRAIN 1, which encodes a mitogen-activated protein kinase kinase 4, influences grain size in rice.

Penggen Duan; Yuchun Rao; Dali Zeng; Yaolong Yang; Ran Xu; Baolan Zhang; Guojun Dong; Qian Qian; Yunhai Li

Although grain size is one of the most important components of grain yield, little information is known about the mechanisms that determine final grain size in crops. Here we characterize rice small grain1 (smg1) mutants, which exhibit small and light grains, dense and erect panicles and comparatively slightly shorter plants. The short grain and panicle phenotypes of smg1 mutants are caused by a defect in cell proliferation. The smg1 mutations were identified, using a map-based cloning approach, in mitogen-activated protein kinase kinase 4 (OsMKK4). Relatively higher expression of OsMKK4/SMG1 was detected in younger organs than in older ones, consistent with its role in cell proliferation. Green fluorescent protein (GFP)-OsMKK4/SMG1 fusion proteins appear to be distributed ubiquitously in plant cells. Further results revealed that OsMKK4 influenced brassinosteroid (BR) responses and the expression of BR-related genes. Thus, our findings have identified OsMKK4 as a factor for grain size, and suggest a possible link between the MAPK pathways and BRs in grain growth.


Molecular Plant | 2014

LSCHL4 from Japonica Cultivar, Which Is Allelic to NAL1, Increases Yield of Indica Super Rice 93-11

Guangheng Zhang; Shuyu Li; Li Wang; Weijun Ye; Dali Zeng; Yuchun Rao; Youlin Peng; Jiang Hu; Yaolong Yang; Jie Xu; Deyong Ren; Zhenyu Gao; Li Zhu; Guojun Dong; Xingming Hu; Meixian Yan; Longbiao Guo; Chuanyou Li; Qian Qian

SUMMARY The basic premise of high yield in rice is to improve leaf photosynthetic efficiency, and coordinate the source–sink relationship in rice plants. The quantitative trait loci (QTLs) qLSCHL4, japonica NAL1 allele from Nipponbare has a pleiotropic function, effectively increased leaf chlorophyll content, enlarged flag leaf size, and enhanced the yield of indica rice cultivar.


Theoretical and Applied Genetics | 2011

Map-based cloning proves qGC-6, a major QTL for gel consistency of japonica/indica cross, responds by Waxy in rice (Oryza sativa L.)

Yan Su; Yuchun Rao; Shikai Hu; Yaolong Yang; Zhenyu Gao; Guanghen Zhang; Jian Liu; Jiang Hu; Meixian Yan; Guojun Dong; Li Zhu; Longbiao Guo; Qian Qian; Dali Zeng

In this study, one major QTL affecting gel consistency (GC) of japonica/indica cross was identified on chromosome 6 using a DH population. To understand the molecular mechanism that regulates GC in rice grains, the major QTL (qGC-6) was isolated through a map-based cloning approach utilizing chromosome segment substitution lines (CSSLs). Using 64 plants with extremely soft GC that were selected on recombinant break points between two SSR markers, RM540 and RM8200 in a BC4F2 population, qGC-6 was mapped to a 60-kb DNA region between two STS markers, S26 and S27. These two markers were then used to further identify recombination break points. Finally, qGC-6 was delimited in an interval of a 11-kb region. Gene prediction analysis of the 11-kb DNA sequence containing qGC-6 identified only one putative ORF, which encodes granule-bound starch synthesis protein (Wx protein). Results of sequencing analysis and complementation experiment confirmed that this candidate ORF is responsible for rice GC. Genetic evidences revealed that Wx might contribute equally to the grain amylose content-controlling gene as well as gel consistency. This new information is important to breed rice varieties with improved grain quality.


BMC Plant Biology | 2014

Genome-wide association study of blast resistance in indica rice

Caihong Wang; Yaolong Yang; Xiaoping Yuan; Qun Xu; Yue Feng; Hanyong Yu; Yiping Wang; Xinghua Wei

BackgroundRice blast disease is one of the most serious and recurrent problems in rice-growing regions worldwide. Most resistance genes were identified by linkage mapping using genetic populations. We extensively examined 16 rice blast strains and a further genome-wide association study based on genotyping 0.8 million single nucleotide polymorphism variants across 366 diverse indica accessions.ResultsTotally, thirty associated loci were identified. The strongest signal (Chr11_6526998, P =1.17 × 10−17) was located within the gene Os11g0225100, one of the rice Pia-blast resistance gene. Another association signal (Chr11_30606558) was detected around the QTL Pif. Our study identified the gene Os11g0704100, a disease resistance protein containing nucleotide binding site-leucine rich repeat domain, as the main candidate gene of Pif. In order to explore the potential mechanism underlying the blast resistance, we further examined a locus in chromosome 12, which was associated with CH149 (P =7.53 × 10−15). The genes, Os12g0424700 and Os12g0427000, both described as kinase-like domain containing protein, were presumed to be required for the full function of this locus. Furthermore, we found some association on chromosome 3, in which it has not been reported any loci associated with rice blast resistance. In addition, we identified novel functional candidate genes, which might participate in the resistance regulation.ConclusionsThis work provides the basis of further study of the potential function of these candidate genes. A subset of true associations would be weakly associated with outcome in any given GWAS; therefore, large-scale replication is necessary to confirm our results. Future research will focus on validating the effects of these candidate genes and their functional variants using genetic transformation and transferred DNA insertion mutant screens, to verify that these genes engender resistance to blast disease in rice.


Nature plants | 2017

Rational design of high-yield and superior-quality rice

Dali Zeng; Zhixi Tian; Yuchun Rao; Guojun Dong; Yaolong Yang; Lichao Huang; Yujia Leng; Jie Xu; Chuan Sun; Guangheng Zhang; Jiang Hu; Li Zhu; Zhenyu Gao; Xingming Hu; Longbiao Guo; Guosheng Xiong; Yonghong Wang; Jiayang Li; Qian Qian

Rice (Oryza sativa L.) is a staple food for more than half of the worlds population. To meet the ever-increasing demand for food, because of population growth and improved living standards, world rice production needs to double by 20301. The development of new elite rice varieties with high yield and superior quality is challenging for traditional breeding approaches, and new strategies need to be developed. Here, we report the successful development of new elite varieties by pyramiding major genes that significantly contribute to grain quality and yield from three parents over five years. The new varieties exhibit higher yield potential and better grain quality than their parental varieties and the Chinas leading super-hybrid rice, Liang-you-pai-jiu (LYP9 or Pei-ai 64S/93-11). Our results demonstrate that rational design is a powerful strategy for meeting the challenges of future crop breeding, particularly in pyramiding multiple complex traits.


BMC Plant Biology | 2014

Quantitative trait loci identification, fine mapping and gene expression profiling for ovicidal response to whitebacked planthopper (Sogatella furcifera Horvath) in rice (Oryza sativa L.).

Yaolong Yang; Jie Xu; Yujia Leng; Guosheng Xiong; Jiang Hu; Guangheng Zhang; Lichao Huang; Lan Wang; Longbiao Guo; Jiayang Li; Feng Chen; Qian Qian; Dali Zeng

BackgroundThe whitebacked planthopper (WBPH), Sogatella furcifera Horváth, is a serious rice pest in Asia. Ovicidal resistance is a natural rice defense mechanism against WBPH and is characterized by the formation of watery lesions (WLs) and increased egg mortality (EM) at the WBPH oviposition sites.ResultsThis study aimed to understand the genetic and molecular basis of rice ovicidal resistance to WBPH by combining genetic and genomic analyses. First, the ovicidal trait in doubled haploid rice lines derived from a WBPH-resistant cultivar (CJ06) and a WBPH-susceptible cultivar (TN1) were phenotyped based on the necrotic symptoms of the leaf sheaths and EM. Using a constructed molecular linkage map, 19 quantitative trait loci (QTLs) associated with WLs and EM were identified on eight chromosomes. Of them, qWL6 was determined to be a major QTL for WL. Based on chromosome segment substitution lines and a residual heterozygous population, a high-resolution linkage analysis further defined the qWL6 locus to a 122-kb region on chromosome 6, which was annotated to encode 20 candidate genes. We then conducted an Affymetrix microarray analysis to determine the transcript abundance in the CJ06 and TN1 plants. Upon WBPH infestation, 432 genes in CJ06 and 257 genes in TN1 were significantly up-regulated, while 802 genes in CJ06 and 398 genes in TN1 were significantly down-regulated. This suggests that remarkable global changes in gene expression contribute to the ovicidal resistance of rice. Notably, four genes in the 122-kb region of the qWL6 locus were differentially regulated between CJ06 and TN1 in response to the WBPH infestation, suggesting they may be candidate resistance genes.ConclusionsThe information obtained from the fine mapping of qWL6 and the microarray analyses will facilitate the isolation of this important resistance gene and its use in breeding WBPH-resistant rice.


Plant Physiology | 2017

A Rice PECTATE LYASE-LIKE Gene Is Required for Plant Growth and Leaf Senescence

Yujia Leng; Yaolong Yang; Deyong Ren; Lichao Huang; Liping Dai; Yuqiong Wang; Long Chen; Zhengjun Tu; Yihong Gao; Xueyong Li; Li Zhu; Jiang Hu; Guangheng Zhang; Zhenyu Gao; Longbiao Guo; Zhaosheng Kong; Yongjun Lin; Qian Qian; Dali Zeng

DEL1 affects rice growth and leaf senescence mediated by PECTATE LYASE-LIKE genes. To better understand the molecular mechanisms behind plant growth and leaf senescence in monocot plants, we identified a mutant exhibiting dwarfism and an early-senescence leaf phenotype, termed dwarf and early-senescence leaf1 (del1). Histological analysis showed that the abnormal growth was caused by a reduction in cell number. Further investigation revealed that the decline in cell number in del1 was affected by the cell cycle. Physiological analysis, transmission electron microscopy, and TUNEL assays showed that leaf senescence was triggered by the accumulation of reactive oxygen species. The DEL1 gene was cloned using a map-based approach. It was shown to encode a pectate lyase (PEL) precursor that contains a PelC domain. DEL1 contains all the conserved residues of PEL and has strong similarity with plant PelC. DEL1 is expressed in all tissues but predominantly in elongating tissues. Functional analysis revealed that mutation of DEL1 decreased the total PEL enzymatic activity, increased the degree of methylesterified homogalacturonan, and altered the cell wall composition and structure. In addition, transcriptome assay revealed that a set of cell wall function- and senescence-related gene expression was altered in del1 plants. Our research indicates that DEL1 is involved in both the maintenance of normal cell division and the induction of leaf senescence. These findings reveal a new molecular mechanism for plant growth and leaf senescence mediated by PECTATE LYASE-LIKE genes.


Journal of Experimental Botany | 2016

PGL, encoding chlorophyllide a oxygenase 1, impacts leaf senescence and indirectly affects grain yield and quality in rice

Yaolong Yang; Jie Xu; Lichao Huang; Yujia Leng; Liping Dai; Yuchun Rao; Long Chen; Yuqiong Wang; Zhengjun Tu; Jiang Hu; Deyong Ren; Guangheng Zhang; Li Zhu; Longbiao Guo; Qian Qian; Dali Zeng

Highlight PGL encodes CAO1 in rice, which is essential for Chl b synthesis and affects Chl synthesis and degradation. PGL also impacts leaf senescence and indirectly affects grain yield and quality.


Plant Physiology | 2015

EARLY SENESCENCE1 Encodes a SCAR-LIKE PROTEIN2 That Affects Water Loss in Rice

Yuchun Rao; Yaolong Yang; Jie Xu; Xiaojing Li; Yujia Leng; Liping Dai; Lichao Huang; Guosheng Shao; Deyong Ren; Jiang Hu; Longbiao Guo; Jianwei Pan; Dali Zeng

An actin nucleation protein affects water loss by regulating stomatal density. The global problem of drought threatens agricultural production and constrains the development of sustainable agricultural practices. In plants, excessive water loss causes drought stress and induces early senescence. In this study, we isolated a rice (Oryza sativa) mutant, designated as early senescence1 (es1), which exhibits early leaf senescence. The es1-1 leaves undergo water loss at the seedling stage (as reflected by whitening of the leaf margin and wilting) and display early senescence at the three-leaf stage. We used map-based cloning to identify ES1, which encodes a SCAR-LIKE PROTEIN2, a component of the suppressor of cAMP receptor/Wiskott-Aldrich syndrome protein family verprolin-homologous complex involved in actin polymerization and function. The es1-1 mutants exhibited significantly higher stomatal density. This resulted in excessive water loss and accelerated water flow in es1-1, also enhancing the water absorption capacity of the roots and the water transport capacity of the stems as well as promoting the in vivo enrichment of metal ions cotransported with water. The expression of ES1 is higher in the leaves and leaf sheaths than in other tissues, consistent with its role in controlling water loss from leaves. GREEN FLUORESCENT PROTEIN-ES1 fusion proteins were ubiquitously distributed in the cytoplasm of plant cells. Collectively, our data suggest that ES1 is important for regulating water loss in rice.


Plant Growth Regulation | 2016

Cloning and functional analysis of pale-green leaf (PGL10) in rice (Oryza sativa L.)

Yaolong Yang; Jie Xu; Yuchun Rao; Yong-Jun Zeng; Hui-Juan Liu; Tingting Zheng; Guangheng Zhang; Jiang Hu; Longbiao Guo; Qian Qian; Dali Zeng; Qing-Hua Shi

Leaf color mutants commonly found in rice have important implications in basic research and breeding science. In this study, we isolated a pale-green leaf mutant (pgl10) from the offspring of the rice cultivar Nipponbare (Oryza sativa L. spp. japonica) through ethyl methanesulfonate mutagenesis. Compared with the wild-type Nipponbare, the pgl10 mutant had phenotypically pale-green leaves with significantly decreased chlorophyll (a and b) and carotenoid contents. Transmission electron micrographs showed that pgl10 had less grana lamellae of chloroplasts than Nipponbare. The results of tissue-specific gene expression analysis revealed that pgl10 was expressed in various rice organs, including roots, stems, leaves, sheaths, and spikes. The expression of Chl synthesis-associated gene in pgl10 was decreased. Genetic analysis suggested that PGL10 was controlled by a recessive gene. Map-based cloning and genome sequencing data showed that pgl10 was a frameshift mutation caused by a single base insertion on chromosome 10. Bioinformation analysis indicated that PGL10 encoded protochlorophyllide oxidoreductase B. Therefore, pgl10 can be a genetic material for further studies on PGL10.

Collaboration


Dive into the Yaolong Yang's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge