Yaoyi Li
Tsinghua University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Yaoyi Li.
Advanced Materials | 2010
Yaoyi Li; Guang Wang; Xie-Gang Zhu; Minhao Liu; Cun Ye; Xi Chen; Yayu Wang; Ke He; Lili Wang; Xucun Ma; Haijun Zhang; Xi Dai; Zhong Fang; X. C. Xie; Ying Liu; Xiao-Liang Qi; Jin-Feng Jia; Shou-Cheng Zhang; Qi-Kun Xue
High-quality Bi2Te3 films can be grown on Si by the state-of-art molecular beam epitaxy technique. In situ angle-resolved photo-emission spectroscopy measurement reveals that the as-grown films are intrinsic topological insulators and the single-Dirac-cone surface state develops at a thickness of two quintuple layers. The work opens a new avenue for engineering of topological materials based on well-developed Si technology.
Advanced Materials | 2011
Guang Wang; Xie-Gang Zhu; Yi-Yang Sun; Yaoyi Li; Tong Zhang; Jing Wen; Xi Chen; Ke He; Lili Wang; Xucun Ma; Jin-Feng Jia; Shengbai Zhang; Qi-Kun Xue
Topological insulator thin films of Bi2Te3 with controlled electronic structure can be grown by regulating the molecular beam epitaxy (MBE) growth kinetics without any extrinsic doping. N- to p-type conversion results from the change in the concentrations of Te-Bi donors and Bi-Te acceptors. This represents a step toward controlling topological surface states, with potential applications in devices.
Nature Communications | 2014
Yaoyi Li; Min Chen; M. Weinert; L. Li
Nanoribbons are model systems for studying nanoscale effects in graphene. For ribbons with zigzag edges, tunable bandgaps have been predicted due to coupling of spin-polarized edge states, which have yet to be systematically demonstrated experimentally. Here we synthesize zigzag nanoribbons using Fe nanoparticle-assisted hydrogen etching of epitaxial graphene/SiC(0001) in ultrahigh vacuum. We observe two gaps in their local density of states by scanning tunnelling spectroscopy. For ribbons wider than 3 nm, gaps up to 0.39 eV are found independent of width, consistent with standard density functional theory calculations. Ribbons narrower than 3 nm, however, exhibit much larger gaps that scale inversely with width, supporting quasiparticle corrections to the calculated gap. These results provide direct experimental confirmation of electron-electron interactions in gap opening in zigzag nanoribbons, and reveal a critical width of 3 nm for its onset. Our findings demonstrate that practical tunable bandgaps can be realized experimentally in zigzag nanoribbons.
Nature Communications | 2013
S. Rajput; Min Chen; Y. Liu; Yaoyi Li; M. Weinert; L. Li
When graphene is interfaced with a semiconductor, a Schottky contact forms with rectifying properties. Graphene, however, is also susceptible to the formation of ripples upon making contact with another material. Here we report intrinsic ripple- and electric field-induced effects at the graphene semiconductor Schottky junction, by comparing chemical vapour-deposited graphene transferred on semiconductor surfaces of opposite polarization-the hydrogen-terminated silicon and carbon faces of hexagonal silicon carbide. Using scanning tunnelling microscopy/spectroscopy and first-principles calculations, we show the formation of a narrow Schottky dipole barrier approximately 10 Å wide, which facilitates the observed effective electric field control of the Schottky barrier height. We further find atomic-scale spatial fluctuations in the Schottky barrier that directly follow the undulation of ripples on both graphene-silicon carbide junctions. These findings reveal fundamental properties of the graphene/semiconductor Schottky junction-a key component of vertical graphene devices that offer functionalities unattainable in planar device architecture.
Applied Physics Letters | 2014
S. Rajput; Yaoyi Li; L. Li
Raman spectroscopy and scanning tunneling microscopy/spectroscopy measurements are performed to determine the atomic structure and electronic properties of H-intercalated graphene/SiC(0001) obtained by annealing the as-grown epitaxial graphene in hydrogen atmosphere. While the as-grown graphene is found to be n-type with the Dirac point (ED) at 450 and 350 meV below Fermi level for the 1st and 2nd layer, the H-intercalated graphene is p-type with ED at 320 and 200 meV above. In addition, ripples are observed in the now quasi-free standing graphene decoupled from the SiC substrate. This causes fluctuations in the Dirac point that directly follow the undulations of the ripples, resulting in electron and hole puddles in the H-intercalated graphene/SiC(0001).
ACS Nano | 2016
S. Rajput; Yaoyi Li; M. Weinert; L. Li
van der Waals (vdW) heterostructures of two-dimensional materials exhibit properties and functionalities that can be tuned by stacking order and interlayer coupling. Although direct covalent bonding is not expected at the heterojunction, the formation of an interface nevertheless breaks the symmetries of the layers, and the orthogonal requirement of the wave functions can lead to indirect interfacial coupling, creating new properties and functionalities beyond their constituent layers. Here, we fabricate graphene/topological insulator vdW heterostructure by transferring chemical vapor deposited graphene onto Bi2Se3 grown by molecular beam epitaxy. Using scanning tunneling microscopy/spectroscopy, we observe a giant spin-orbit splitting of the graphene Dirac states up to 80 meV. Density functional theory calculations further reveal that this splitting of the graphene bands is a consequence of the breaking of inversion symmetry and the orthogonalization requirement on the overlapping wave functions at the interface, rather than simple direct bonding. Our findings reveal two intrinsic characteristics-the symmetry breaking and orthogonalization of the wave functions at the interface-that underlines the properties of vdW heterostructures.
Nature Physics | 2014
Y. Liu; Yaoyi Li; S. Rajput; Daniel Gilks; Leonardo Lari; Pedro L. Galindo; M. Weinert; Vlado K. Lazarov; L. Li
Physical Review Letters | 2013
Y. Liu; Yaoyi Li; Gilks D; Vlado K. Lazarov; M. Weinert; L. Li
Physical Review Letters | 2009
Yaoyi Li; Miao Liu; Dayan Ma; Decai Yu; Xi Chen; Xucun Ma; Qi-Kun Xue; Ke-Wei Xu; Jin-Feng Jia; Feng Liu
arXiv: Mesoscale and Nanoscale Physics | 2009
Yaoyi Li; Guang Wang; Xie-Gang Zhu; Minhao Liu; Cun Ye; Xi Chen; Yayu Wang; Ke He; Lili Wang; Xucun Ma; Haijun Zhang; Xi Dai; Zhong Fang; X. C. Xie; Ying Liu; Xiao-Liang Qi; Jin-Feng Jia; Shou-Cheng Zhang; Qi-Kun Xue