Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yaoyu Ning is active.

Publication


Featured researches published by Yaoyu Ning.


Cancer Cell | 2009

AP24534, a pan-BCR-ABL inhibitor for chronic myeloid leukemia, potently inhibits the T315I mutant and overcomes mutation-based resistance.

Thomas O'Hare; William C. Shakespeare; Xiaotian Zhu; Christopher A. Eide; Victor M. Rivera; Frank Wang; Lauren T. Adrian; Tianjun Zhou; Wei Sheng Huang; Qihong Xu; Chester A. Metcalf; Jeffrey W. Tyner; Marc Loriaux; Amie S. Corbin; Scott Wardwell; Yaoyu Ning; Jeffrey Keats; Yihan Wang; Raji Sundaramoorthi; Mathew Thomas; Dong Zhou; Joseph Snodgrass; Lois Commodore; Tomi K. Sawyer; David C. Dalgarno; Michael W. Deininger; Brian J. Druker; Tim Clackson

Inhibition of BCR-ABL by imatinib induces durable responses in many patients with chronic myeloid leukemia (CML), but resistance attributable to kinase domain mutations can lead to relapse and a switch to second-line therapy with nilotinib or dasatinib. Despite three approved therapeutic options, the cross-resistant BCR-ABL(T315I) mutation and compound mutants selected on sequential inhibitor therapy remain major clinical challenges. We report design and preclinical evaluation of AP24534, a potent, orally available multitargeted kinase inhibitor active against T315I and other BCR-ABL mutants. AP24534 inhibited all tested BCR-ABL mutants in cellular and biochemical assays, suppressed BCR-ABL(T315I)-driven tumor growth in mice, and completely abrogated resistance in cell-based mutagenesis screens. Our work supports clinical evaluation of AP24534 as a pan-BCR-ABL inhibitor for treatment of CML.


Journal of Medicinal Chemistry | 2010

Discovery of 3-[2-(imidazo[1,2-b]pyridazin-3-yl)ethynyl]-4-methyl-N-{4-[(4-methylpiperazin-1-yl)methyl]-3-(trifluoromethyl)phenyl}benzamide (AP24534), a potent, orally active pan-inhibitor of breakpoint cluster region-abelson (BCR-ABL) kinase including the T315I gatekeeper mutant.

Wei-Sheng Huang; Chester A. Metcalf; Raji Sundaramoorthi; Yihan Wang; Dong Zou; R. Mathew Thomas; Xiaotian Zhu; Lisi Cai; David Wen; Shuangying Liu; Jan Antoinette C. Romero; Jiwei Qi; Ingrid Chen; Geetha Banda; Scott P. Lentini; Sasmita Das; Qihong Xu; Jeff Keats; Frank Wang; Scott Wardwell; Yaoyu Ning; Joseph Snodgrass; Marc I. Broudy; Karin Russian; Tianjun Zhou; Lois Commodore; Narayana I. Narasimhan; Qurish K. Mohemmad; John Iuliucci; Victor M. Rivera

In the treatment of chronic myeloid leukemia (CML) with BCR-ABL kinase inhibitors, the T315I gatekeeper mutant has emerged as resistant to all currently approved agents. This report describes the structure-guided design of a novel series of potent pan-inhibitors of BCR-ABL, including the T315I mutation. A key structural feature is the carbon-carbon triple bond linker which skirts the increased bulk of Ile315 side chain. Extensive SAR studies led to the discovery of development candidate 20g (AP24534), which inhibited the kinase activity of both native BCR-ABL and the T315I mutant with low nM IC(50)s, and potently inhibited proliferation of corresponding Ba/F3-derived cell lines. Daily oral administration of 20g significantly prolonged survival of mice injected intravenously with BCR-ABL(T315I) expressing Ba/F3 cells. These data, coupled with a favorable ADME profile, support the potential of 20g to be an effective treatment for CML, including patients refractory to all currently approved therapies.


Chemical Biology & Drug Design | 2011

Crizotinib-Resistant Mutants of EML4-ALK Identified Through an Accelerated Mutagenesis Screen

Sen Zhang; Frank Wang; Jeffrey Keats; Xiaotian Zhu; Yaoyu Ning; Scott Wardwell; Lauren Moran; Qurish K. Mohemmad; Rana Anjum; Yihan Wang; Narayana I. Narasimhan; David C. Dalgarno; William C. Shakespeare; Juan J. Miret; Tim Clackson; Victor M. Rivera

Activating gene rearrangements of anaplastic lymphoma kinase (ALK) have been identified as driver mutations in non‐small‐cell lung cancer, inflammatory myofibroblastic tumors, and other cancers. Crizotinib, a dual MET/ALK inhibitor, has demonstrated promising clinical activity in patients with non‐small‐cell lung cancer and inflammatory myofibroblastic tumors harboring ALK translocations. Inhibitors of driver kinases often elicit kinase domain mutations that confer resistance, and such mutations have been successfully predicted using in vitro mutagenesis screens. Here, this approach was used to discover an extensive set of ALK mutations that can confer resistance to crizotinib. Mutations at 16 residues were identified, structurally clustered into five regions around the kinase active site, which conferred varying degrees of resistance. The screen successfully predicted the L1196M, C1156Y, and F1174L mutations, recently identified in crizotinib‐resistant patients. In separate studies, we demonstrated that crizotinib has relatively modest potency in ALK‐positive non‐small‐cell lung cancer cell lines. A more potent ALK inhibitor, TAE684, maintained substantial activity against mutations that conferred resistance to crizotinib. Our study identifies multiple novel mutations in ALK that may confer clinical resistance to crizotinib, suggests that crizotinib’s narrow selectivity window may underlie its susceptibility to such resistance and demonstrates that a more potent ALK inhibitor may be effective at overcoming resistance.


Molecular Cancer Therapeutics | 2011

Ridaforolimus (AP23573, MK-8669), a potent mTOR inhibitor, has broad antitumor activity and can be optimally administered using intermittent dosing regimens

Victor M. Rivera; Rachel M. Squillace; David Miller; Lori Berk; Scott Wardwell; Yaoyu Ning; Roy M. Pollock; Narayana I. Narasimhan; John Iuliucci; Frank Wang; Tim Clackson

The mTOR pathway is hyperactivated through oncogenic transformation in many human malignancies. Ridaforolimus (AP23573; MK-8669) is a novel rapamycin analogue that selectively targets mTOR and is currently under clinical evaluation. In this study, we investigated the mechanistic basis for the antitumor activity of ridaforolimus in a range of human tumor types, exploring potential markers of response, and determining optimal dosing regimens to guide clinical studies. Administration of ridaforolimus to tumor cells in vitro elicited dose-dependent inhibition of mTOR activity with concomitant effects on cell growth and division. We showed that ridaforolimus exhibits a predominantly cytostatic mode of action, consistent with the findings for other mTOR inhibitors. Potent inhibitory effects on vascular endothelial growth factor secretion, endothelial cell growth, and glucose metabolism were also observed. Although PTEN and/or phosphorylated AKT status have been proposed as potential mTOR pathway biomarkers, neither was predictive for ridaforolimus responsiveness in the heterogeneous panel of cancer cell lines examined. In mouse models, robust antitumor activity was observed in human tumor xenografts using a series of intermittent dosing schedules, consistent with pharmacodynamic observations of mTOR pathway inhibition for at least 72 hours following dosing. Parallel skin-graft rejection studies established that intermittent dosing schedules lack the immunosuppressive effects seen with daily dosing. Overall these findings show the broad inhibitory effects of ridaforolimus on cell growth, division, metabolism, and angiogenesis, and support the use of intermittent dosing as a means to optimize antitumor activity while minimizing systemic effects. Mol Cancer Ther; 10(6); 1059–71. ©2011 AACR.


Journal of Medicinal Chemistry | 2016

Discovery of Brigatinib (AP26113), a Phosphine Oxide-Containing, Potent, Orally Active Inhibitor of Anaplastic Lymphoma Kinase

Wei-Sheng Huang; Shuangying Liu; Dong Zou; Mathew Thomas; Yihan Wang; Tianjun Zhou; Jan Antoinette C. Romero; Anna Kohlmann; Feng Li; Jiwei Qi; Lisi Cai; Timothy A. Dwight; Yongjin Xu; Rongsong Xu; Rory Dodd; Angela Toms; Lois Parillon; Xiaohui Lu; Rana Anjum; Sen Zhang; Frank Wang; Jeffrey Keats; Scott Wardwell; Yaoyu Ning; Qihong Xu; Lauren Moran; Qurish K. Mohemmad; Hyun Gyung Jang; Tim Clackson; Narayana I. Narasimhan

In the treatment of echinoderm microtubule-associated protein-like 4 (EML4)-anaplastic lymphoma kinase positive (ALK+) non-small-cell lung cancer (NSCLC), secondary mutations within the ALK kinase domain have emerged as a major resistance mechanism to both first- and second-generation ALK inhibitors. This report describes the design and synthesis of a series of 2,4-diarylaminopyrimidine-based potent and selective ALK inhibitors culminating in identification of the investigational clinical candidate brigatinib. A unique structural feature of brigatinib is a phosphine oxide, an overlooked but novel hydrogen-bond acceptor that drives potency and selectivity in addition to favorable ADME properties. Brigatinib displayed low nanomolar IC50s against native ALK and all tested clinically relevant ALK mutants in both enzyme-based biochemical and cell-based viability assays and demonstrated efficacy in multiple ALK+ xenografts in mice, including Karpas-299 (anaplastic large-cell lymphomas [ALCL]) and H3122 (NSCLC). Brigatinib represents the most clinically advanced phosphine oxide-containing drug candidate to date and is currently being evaluated in a global phase 2 registration trial.


Clinical Cancer Research | 2016

The Potent ALK Inhibitor Brigatinib (AP26113) Overcomes Mechanisms of Resistance to First- and Second-Generation ALK Inhibitors in Preclinical Models

Sen Zhang; Rana Anjum; Rachel M. Squillace; Sara Nadworny; Tianjun Zhou; Jeff Keats; Yaoyu Ning; Scott Wardwell; David Miller; Youngchul Song; Lindsey Eichinger; Lauren Moran; Wei-Sheng Huang; Shuangying Liu; Dong Zou; Yihan Wang; Qurish K. Mohemmad; Emily Y. Ye; Narayana I. Narasimhan; Frank Wang; Juan J. Miret; Xiaotian Zhu; Tim Clackson; David C. Dalgarno; William C. Shakespeare; Victor M. Rivera

Purpose: Non–small cell lung cancers (NSCLCs) harboring ALK gene rearrangements (ALK+) typically become resistant to the first-generation anaplastic lymphoma kinase (ALK) tyrosine kinase inhibitor (TKI) crizotinib through development of secondary resistance mutations in ALK or disease progression in the brain. Mutations that confer resistance to second-generation ALK TKIs ceritinib and alectinib have also been identified. Here, we report the structure and first comprehensive preclinical evaluation of the next-generation ALK TKI brigatinib. Experimental Design: A kinase screen was performed to evaluate the selectivity profile of brigatinib. The cellular and in vivo activities of ALK TKIs were compared using engineered and cancer-derived cell lines. The brigatinib–ALK co-structure was determined. Results: Brigatinib potently inhibits ALK and ROS1, with a high degree of selectivity over more than 250 kinases. Across a panel of ALK+ cell lines, brigatinib inhibited native ALK (IC50, 10 nmol/L) with 12-fold greater potency than crizotinib. Superior efficacy of brigatinib was also observed in mice with ALK+ tumors implanted subcutaneously or intracranially. Brigatinib maintained substantial activity against all 17 secondary ALK mutants tested in cellular assays and exhibited a superior inhibitory profile compared with crizotinib, ceritinib, and alectinib at clinically achievable concentrations. Brigatinib was the only TKI to maintain substantial activity against the most recalcitrant ALK resistance mutation, G1202R. The unique, potent, and pan-ALK mutant activity of brigatinib could be rationalized by structural analyses. Conclusions: Brigatinib is a highly potent and selective ALK inhibitor. These findings provide the molecular basis for the promising activity being observed in ALK+, crizotinib-resistant patients with NSCLC being treated with brigatinib in clinical trials. Clin Cancer Res; 22(22); 5527–38. ©2016 AACR.


Cancer Research | 2010

Abstract LB-298: AP26113, a potent ALK inhibitor, overcomes mutations in EML4-ALK that confer resistance to PF-02341066 (PF1066)

Sen Zhang; Frank Wang; Jeffrey Keats; Yaoyu Ning; Scott Wardwell; Lauren Moran; Qurish K. Mohemmad; Rana Anjum; Yihan Wang; Xiaotian Zhu; Juan J. Miret; David C. Dalgarno; Narayana I. Narasimhan; Tim Clackson; William C. Shakespeare; Victor M. Rivera

Proceedings: AACR 101st Annual Meeting 2010‐‐ Apr 17‐21, 2010; Washington, DC AP26113 is a potent and selective inhibitor of anaplastic lymphoma kinase (ALK) (AACR 2010; #3623). Activating gene rearrangements of ALK, such as EML4-ALK, have been identified as driver mutations in NSCLC and other cancers. There is strong precedence for the development of resistance to targeted therapies that inhibit driver mutations. Kinase domain mutations that confer resistance in patients have been successfully predicted by in vitro mutagenesis screens in BaF3 cells (e.g. BCR-ABL in CML). Here, the BaF3 system was used to identify mutations in ALK that confer resistance to PF1066, a clinically validated dual Met/ALK inhibitor (ASCO 2009; #3509), or AP26113. PF1066-resistant mutations were identified at all concentrations tested (up to 2000 nM). In contrast, 1000 nM AP26113 completely suppressed emergence of resistance. Six mutations, all in the kinase domain, were identified that confer some degree of resistance to 1 or both compounds (Table). AP26113 inhibited viability of BaF3 cells expressing these mutants with IC50s of 23 - 269 nM. PF1066 inhibited viability with IC50s of 311 -1419 nM, with 3 mutants having sensitivity indistinguishable from parental BaF3 cells, which lack EML4-ALK. The 2 mutations that confer the greatest resistance to PF1066 were examined in a BaF3 xenograft model in which compounds were administered daily by oral dosing. A 200 mg/kg dose of PF1066 induced regression of tumors expressing native EML4-ALK but was completely inactive against G1269S or L1196M (gatekeeper) mutants. In contrast, AP26113 induced regression of tumors expressing native EML4-ALK and the G1269S and L1196M mutants at 25, 50 and 50 mg/kg, respectively. Analysis of ALK phosphorylation in tumors demonstrated strong inhibition of the mutants by 50 mg/kg AP26113 but not 200 mg/kg PF1066. These results identify several mutations that may confer resistance to PF1066 in patients and suggest that more potent compounds such as AP26113 may be required to overcome such resistance. View this table: Sensitivity of BaF3 cells expressing native and mutant EML4-ALK to PF-02341066 and AP26113 Citation Format: {Authors}. {Abstract title} [abstract]. In: Proceedings of the 101st Annual Meeting of the American Association for Cancer Research; 2010 Apr 17-21; Washington, DC. Philadelphia (PA): AACR; Cancer Res 2010;70(8 Suppl):Abstract nr LB-298.


Clinical Cancer Research | 2014

Ponatinib inhibits polyclonal drug-resistant KIT oncoproteins and shows therapeutic potential in heavily pretreated gastrointestinal stromal tumor (GIST) patients.

Andrew Paul Garner; Joseph M. Gozgit; Rana Anjum; Sadanand Vodala; Alexa Schrock; Tianjun Zhou; César Serrano; Grant Eilers; Meijun Zhu; Julia Ketzer; Scott Wardwell; Yaoyu Ning; Youngchul Song; Anna Kohlmann; Frank Wang; Tim Clackson; Michael C. Heinrich; Jonathan A. Fletcher; Sebastian Bauer; Victor M. Rivera

Purpose: KIT is the major oncogenic driver of gastrointestinal stromal tumors (GIST). Imatinib, sunitinib, and regorafenib are approved therapies; however, efficacy is often limited by the acquisition of polyclonal secondary resistance mutations in KIT, with those located in the activation (A) loop (exons 17/18) being particularly problematic. Here, we explore the KIT-inhibitory activity of ponatinib in preclinical models and describe initial characterization of its activity in patients with GIST. Experimental Design: The cellular and in vivo activities of ponatinib, imatinib, sunitinib, and regorafenib against mutant KIT were evaluated using an accelerated mutagenesis assay and a panel of engineered and GIST-derived cell lines. The ponatinib–KIT costructure was also determined. The clinical activity of ponatinib was examined in three patients with GIST previously treated with all three FDA-approved agents. Results: In engineered and GIST-derived cell lines, ponatinib potently inhibited KIT exon 11 primary mutants and a range of secondary mutants, including those within the A-loop. Ponatinib also induced regression in engineered and GIST-derived tumor models containing these secondary mutations. In a mutagenesis screen, 40 nmol/L ponatinib was sufficient to suppress outgrowth of all secondary mutants except V654A, which was suppressed at 80 nmol/L. This inhibitory profile could be rationalized on the basis of structural analyses. Ponatinib (30 mg daily) displayed encouraging clinical activity in two of three patients with GIST. Conclusion:Ponatinib possesses potent activity against most major clinically relevant KIT mutants and has demonstrated preliminary evidence of activity in patients with refractory GIST. These data strongly support further evaluation of ponatinib in patients with GIST. Clin Cancer Res; 20(22); 5745–55. ©2014 AACR.


Cancer Research | 2012

Abstract 1794: AP26113 is a dual ALK/EGFR inhibitor: Characterization against EGFR T790M in cell and mouse models of NSCLC

Victor M. Rivera; Frank Wang; Rana Anjum; Sen Zhang; Rachel M. Squillace; Jeffrey Keats; David Miller; Yaoyu Ning; Scott Wardwell; Lauren Moran; Juan J. Miret; Narayana I. Narasimhan; David C. Dalgarno; Tim Clackson; William C. Shakepeare

Background: The EGFR T790M gatekeeper mutation accounts for ∼50% of resistance observed in patients treated with first generation inhibitors that target activated variants of EGFR. Multiple irreversible T790M inhibitors are in development but can exhibit skin and GI toxicity due to co-inhibition of native (endogenous) EGFR, suggesting that T790M-selective agents will be required. Previously, we have identified AP26113 as a potent ALK inhibitor that maintains activity against crizotinib-resistant variants, including the L1196M gatekeeper mutant. Here we further characterize AP261139s activity as a reversible inhibitor of activated and T790M-mutant EGFR. Methods: The activity of AP26113 against native EGFR, or activated forms (delE746_A750 [DEL]) with or without a T790M resistance mutation, was examined in NSCLC as well as engineered Ba/F3 cell lines. EGFR activity was assessed by measuring levels of phosphorylated EGFR, in vitro proliferation measured by MTS assay, and in vivo tumor growth measured in mouse xenografts following daily oral dosing. Results: AP26113 did not inhibit native EGFR phosphorylation in a NSCLC cell line (H358) or in engineered Ba/F3 cells (IC50s >3000 nM). In contrast, potent activity was observed against activated forms of EGFR, with or without the T790M mutation. In Ba/F3 cells expressing EGFR-DEL, AP26113 inhibited EGFR phosphorylation and viability with IC50s of 75 and 114 nM, respectively. In Ba/F3 cells expressing EGFR-DEL/T790M, AP26113 inhibited EGFR phosphorylation and viability with IC50s of 15 and 281 nM, respectively. In a NSCLC line expressing EGFR-DEL (HCC827), AP26113 inhibited EGFR phosphorylation with an IC50 of 62 nM and cell growth with a GI50 of 165 nM. In HCC827 cells expressing EGFR-DEL/T790M AP26113 inhibited EGFR phosphorylation with an IC50 of 59 nM and cell growth with a GI50 of 245 nM. AP26113 also exhibited similar potency against HCC827 cells expressing either EGFR-DEL or EGFR-DEL/T790M in a xenograft model, with daily oral doses of 25 mg/kg or greater leading to tumor regression in both models. Anti-tumor activity that was associated with inhibition of EGFR phosphorylation was also seen in a Ba/F3 EGFR-DEL/T790M tumor model. Conclusions: AP26113 is a potent, reversible inhibitor of activated and T790M-mutant EGFR that does not inhibit the native enzyme. Importantly, orally efficacious doses in mice against activated and T790M-mutant EGFR are similar to those active against crizotinib-resistant ALK variants, suggesting that AP26113 is a dual ALK/mutant EGFR inhibitor with potential to target these two well-defined and important subsets of NSCLC. Based on these data, we recently initiated a Phase 1/2 clinical trial of AP26113 (NCT01449461, www.clinicaltrials.gov) in ALK and EGFR+ NSCLC patients. Citation Format: {Authors}. {Abstract title} [abstract]. In: Proceedings of the 103rd Annual Meeting of the American Association for Cancer Research; 2012 Mar 31-Apr 4; Chicago, IL. Philadelphia (PA): AACR; Cancer Res 2012;72(8 Suppl):Abstract nr 1794. doi:1538-7445.AM2012-1794


Journal of Medicinal Chemistry | 2009

9-(Arenethenyl)purines as Dual Src/Abl Kinase Inhibitors Targeting the Inactive Conformation: Design, Synthesis, and Biological Evaluation

Wei-Sheng Huang; Xiaotian Zhu; Yihan Wang; Mohammad Azam; David Wen; Raji Sundaramoorthi; R. Mathew Thomas; Shuangying Liu; Geetha Banda; Scott P. Lentini; Sasmita Das; Qihong Xu; Jeff Keats; Frank Wang; Scott Wardwell; Yaoyu Ning; Joseph Snodgrass; Marc I. Broudy; Karin Russian; George Q. Daley; John Iuliucci; David C. Dalgarno; Tim Clackson; Tomi K. Sawyer; William C. Shakespeare

A novel series of potent dual Src/Abl kinase inhibitors based on a 9-(arenethenyl)purine core has been identified. Unlike traditional dual Src/Abl inhibitors targeting the active enzyme conformation, these inhibitors bind to the inactive, DFG-out conformation of both kinases. Extensive SAR studies led to the discovery of potent and orally bioavailable inhibitors, some of which demonstrated in vivo efficacy. Once-daily oral administration of inhibitor 9i (AP24226) significantly prolonged the survival of mice injected intravenously with wild type Bcr-Abl expressing Ba/F3 cells at a dose of 10 mg/kg. In a separate model, oral administration of 9i to mice bearing subcutaneous xenografts of Src Y527F expressing NIH 3T3 cells elicited dose-dependent tumor shrinkage with complete tumor regression observed at the highest dose. Notably, several inhibitors (e.g., 14a, AP24163) exhibited modest cellular potency (IC50 = 300-400 nM) against the Bcr-Abl mutant T315I, a variant resistant to all currently marketed therapies for chronic myeloid leukemia.

Collaboration


Dive into the Yaoyu Ning's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge