Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yaremi Quiros is active.

Publication


Featured researches published by Yaremi Quiros.


Kidney International | 2011

New insights into the mechanism of aminoglycoside nephrotoxicity: an integrative point of view

José M. López-Novoa; Yaremi Quiros; Laura Vicente Vicente; Ana I. Morales; Francisco J. López-Hernández

Nephrotoxicity is one of the most important side effects and therapeutical limitations of aminoglycoside antibiotics, especially gentamicin. Despite rigorous patient monitoring, nephrotoxicity appears in 10-25% of therapeutic courses. Traditionally, aminoglycoside nephrotoxicity has been considered to result mainly from tubular damage. Both lethal and sub-lethal alterations in tubular cells handicap reabsorption and, in severe cases, may lead to a significant tubular obstruction. However, a reduced glomerular filtration is necessary to explain the symptoms of the disease. Reduced filtration is not solely the result of tubular obstruction and tubular malfunction, resulting in tubuloglomerular feedback activation; renal vasoconstriction and mesangial contraction are also crucial to fully explain aminoglycoside nephrotoxicity. This review critically presents an integrative view on the interactions of tubular, glomerular, and vascular effects of gentamicin, in the context of the most recent information available. Moreover, it discusses therapeutic perspectives for prevention of aminoglycoside nephrotoxicity derived from the pathophysiological knowledge.


Toxicological Sciences | 2011

An Integrative Overview on the Mechanisms Underlying the Renal Tubular Cytotoxicity of Gentamicin

Yaremi Quiros; Laura Vicente-Vicente; Ana I. Morales; José M. López-Novoa; Francisco J. López-Hernández

Gentamicin is an aminoglycoside antibiotic widely used against infections by Gram-negative microorganisms. Nephrotoxicity is the main limitation to its therapeutic efficacy. Gentamicin nephrotoxicity occurs in 10-20% of therapeutic regimes. A central aspect of gentamicin nephrotoxicity is its tubular effect, which may range from a mere loss of the brush border in epithelial cells to an overt tubular necrosis. Tubular cytotoxicity is the consequence of many interconnected actions, triggered by drug accumulation in epithelial tubular cells. Accumulation results from the presence of the endocytic receptor complex formed by megalin and cubulin, which transports proteins and organic cations inside the cells. Gentamicin then accesses and accumulates in the endosomal compartment, the Golgi and endoplasmic reticulum (ER), causes ER stress, and unleashes the unfolded protein response. An excessive concentration of the drug over an undetermined threshold destabilizes intracellular membranes and the drug redistributes through the cytosol. It then acts on mitochondria to unleash the intrinsic pathway of apoptosis. In addition, lysosomal cathepsins lose confinement and, depending on their new cytosolic concentration, they contribute to the activation of apoptosis or produce a massive proteolysis. However, other effects of gentamicin have also been linked to cell death, such as phospholipidosis, oxidative stress, extracellular calcium-sensing receptor stimulation, and energetic catastrophe. Besides, indirect effects of gentamicin, such as reduced renal blood flow and inflammation, may also contribute or amplify its cytotoxicity. The purpose of this review was to critically integrate all these effects and discuss their relative contribution to tubular cell death.


Toxicological Sciences | 2010

Nephrotoxicity of Uranium: Pathophysiological, Diagnostic and Therapeutic Perspectives

Laura Vicente-Vicente; Yaremi Quiros; Fernando Pérez-Barriocanal; José M. López-Novoa; Francisco J. López-Hernández; Ana I. Morales

As in the case of other heavy metals, a considerable body of evidence suggests that overexposure to uranium may cause pathological alterations to the kidneys in both humans and animals. In the present work, our aim was to analyze the available data from a critical perspective that should provide a view of the real danger of the nephrotoxicity of this metal for human beings. A further aim was to elaborate a comparative compilation of the renal pathophysiological data obtained in humans and experimental animals with a view to gaining more insight into our knowledge of the mechanisms of action and renal damage. Finally, we address the existing perspectives for the improvement of diagnostic methods and the treatment of intoxications by uranium, performing an integrated analysis of all these aspects.


Kidney International | 2011

Urinary levels of regenerating islet-derived protein III β and gelsolin differentiate gentamicin from cisplatin-induced acute kidney injury in rats

Laura Ferreira; Yaremi Quiros; Sandra M. Sancho-Martínez; Omar García-Sánchez; César Raposo; José M. López-Novoa; José Manuel González-Buitrago; Francisco J. López-Hernández

A key aspect for the clinical handling of acute kidney injury is an early diagnosis, for which a new generation of urine biomarkers is currently under development including kidney injury molecule 1 and neutrophil gelatinase-associated lipocalin. A further diagnostic refinement is needed where one specific cause among several potentially nephrotoxic insults can be identified during the administration of multidrug therapies. In this study we identified increases in regenerating islet-derived protein III beta (reg IIIb) and gelsolin as potential differential urinary markers of gentamicins nephrotoxicity. Indeed, urinary levels of both reg IIIb and gelsolin distinguish between the nephrotoxicity caused by gentamicin from that caused by cisplatin where these markers were not increased by the latter. Reg IIIb was found to be overexpressed in the kidneys of gentamicin-treated rats and excreted into the urine, whereas urinary gelsolin originated from the blood by glomerular filtration. Our results illustrate an etiological diagnosis of acute kidney injury through analysis of urine. Thus, our results raise the possibility of identifying the actual nephrotoxin in critically ill patients who are often treated with several nephrotoxic agents at the same time, thereby providing the potential for tailoring therapy to an individual patient, which is the aim of personalized medicine.


Toxicological Sciences | 2013

Cardiotrophin-1 Administration Prevents the Renal Toxicity of Iodinated Contrast Media in Rats

Yaremi Quiros; Penélope D. Sánchez-González; Francisco J. López-Hernández; Ana I. Morales; José M. López-Novoa

Although generally reversible, contrast media toxicity often induces contrast-induced nephropathy (CIN), which is associated with longer hospitalization time, the need for dialysis, and higher incidence of later cardiovascular events and higher mortality. Preventive cotreatments have been assayed at the preclinical and clinical levels, but recent meta-analysis has not demonstrated a beneficial effect, which supports the search for new nephroprotective strategies. We have assessed if the administration of cardiotrophin-1 (CT-1), an endogenous cytokine with protective properties on the heart and liver, might mitigate CIN in rats. We have developed a model of CIN induced by the administration of the contrast medium gastrographin iv (3.7mg/kg) in rats sensitized by previous administration of subnephrotoxic doses of gentamicin (50mg/kg/day, ip) for 6 days. The severity of CIN was assessed by the measurement of renal function; renal histological damage; urinary excretion of markers of tubular damage, including N-acetyl beta glucosaminidase (NAG), kidney injury molecule 1 (KIM-1), and plasminogen activator inhibitor 1; lipid peroxidation; and renal apoptosis. Treatment with CT-1 almost completely prevented the renal tissue damage, as evidenced by almost total prevention of tubular desepithelization and tubular obstruction, reduced caspase activation, and cell proliferation. Besides, CT-1 also prevented the increment in renal tissue levels of renal tissue injury markers NAG, KIM-1, and neutrophil gelatinase-associated lipocalin. Oxidative stress, a hallmark of CIN, was also prevented by CT-1. Administration of CT-1 also prevented the derangement in kidney function induced by CIN. Renal hemodynamics, also impaired by the contrast medium, was normal in rats cotreated with CT-1. CT-1 administration significantly prevents the alterations in renal function and structure observed in a rat model of CIN.


Kidney International | 2010

Sub-nephrotoxic doses of gentamicin predispose animals to developing acute kidney injury and to excrete ganglioside M2 activator protein

Yaremi Quiros; Laura Ferreira; Sandra M. Sancho-Martínez; José Manuel González-Buitrago; José M. López-Novoa; Francisco J. López-Hernández

We studied whether nephrotoxic drug administration sensitizes to acute renal failure (ARF) by administering a sub-nephrotoxic dose of gentamicin. This pre-treatment sensitized animals with no sign of renal injury to develop ARF when exposed to a second potential nephrotoxic drug, also given at sub-nephrotoxic doses that would be otherwise harmless to non-sensitized animals. We identified urinary ganglioside M2 activator protein (GM2AP) as a biomarker of an enhanced sensitivity to suffer ARF following sub-nephrotoxic treatment with gentamicin. Sub-nephrotoxic gentamicin did not alter renal GM2AP gene expression or protein levels, determined by reverse transcriptase-PCR, western blot, and immunostaining, nor was its serum level modified. The origin of increased GM2AP in the urine is thought to be a defective tubular handling of this protein as a consequence of gentamicin action. Hence, markers of acquired sensitivity may improve the prevention of ARF by enhancing our capacity to monitor for this condition, in a preemptive manner.


Electrophoresis | 2013

Unveiling the rat urinary proteome with three complementary proteomics approaches.

Fernando Sánchez-Juanes; María Del Carmen Muñiz; César Raposo; Silvia Rodríguez-Prieto; Alberto Paradela; Yaremi Quiros; Francisco J. López-Hernández; José Manuel González-Buitrago; Laura Ferreira

Urine is a suitable biological fluid to look for markers of physiological and pathological processes, including renal and nonrenal diseases. In addition, it is an optimal body sample for diagnosis, because it is easily obtained without invasive procedures and can be sampled in large quantities at almost any time. Rats are frequently used as a model to study human diseases, and rat urine has been analyzed to search for disease biomarkers. The normal human urinary proteome has been studied extensively, but the normal rat urinary proteome has not been studied in such depth. In light of this, we were prompted to analyze the normal rat urinary proteome using three complementary proteomics platforms: SDS‐PAGE separation, followed by LC‐ESI‐MS/MS; 2DE, followed by MALDI‐TOF‐TOF and 2D‐liquid chromatography‐chromatofocusing, followed by LC‐ESI‐Q‐TOF. A total of 366 unique proteins were identified, of which only 5.2% of unique proteins were identified jointly by the three proteomics platforms used. This suggests that simultaneous proteomics techniques provide complementary and nonredundant information. Our analysis affords the most extensive rat urinary protein database currently available and this may be useful in the study of renal physiology and in the search for biomarkers related to renal and nonrenal diseases.


Pharmacological Research | 2016

Cardiotrophin-1 therapy prevents gentamicin-induced nephrotoxicity in rats

Yaremi Quiros; Víctor Blanco-Gozalo; Jose I. Sanchez-Gallego; Francisco J. López-Hernández; J.J. Ruiz; María P. Pérez de Obanos; José M. López-Novoa

Aminoglycosides are very effective antibiotics for the treatment of severe infections, but they rank among the most frequent causes of drug-induced nephrotoxicity. Thus, prevention of aminoglycoside nephrotoxicity is an unmet therapeutic objective. Cardiotrophin-1 (CT-1), a member of the IL-6 family of cytokines, has been reported to protect the kidney against toxic and ischemic acute kidney injury (AKI). We have assessed the effect of rat CT-1 in the severity of gentamicin (G)-induced AKI. Groups of male Wistar rats received the following for 6 consecutive days: i) isotonic saline solution (group CONT), ii) G, 150mg/kg/day, i.p. (group G), iii) CT-1, 100μg/kg/day i.v. (group CT-1), or iv) G and CT-1 at the doses described above. The G group showed a manifest AKI characterized by low creatinine clearance, high plasma creatinine and urea levels, increased urinary excretion of proteins, glucose and AKI markers such as N-acetyl-glucosaminidase, neutrophil gelatinase-associated lipocalin, kidney-injury molecule-1 and T-gelsolin, increased kidney levels of CD-68, iNOS, IL-1β and TNF-α, and markedly higher histological renal damage and leukocyte infiltration than the CONT and CT-1 groups. Administration of CT-1 together with G reduced almost all of the above-described manifestations of G-induced AKI. The results of this study have potential clinical application, as CT-1 is near to being used as a drug for organ protection.


Medicine | 2015

Increased Klk9 Urinary Excretion Is Associated to Hypertension-Induced Cardiovascular Damage and Renal Alterations.

Ana M. Blázquez-Medela; Omar García-Sánchez; Yaremi Quiros; Víctor Blanco-Gozalo; Laura Prieto-García; Sandra M. Sancho-Martínez; Miguel Romero; Juan Duarte; Francisco J. López-Hernández; José M. López-Novoa; Carlos Martínez-Salgado

AbstractEarly detection of hypertensive end-organ damage and secondary diseases are key determinants of cardiovascular prognosis in patients suffering from arterial hypertension. Presently, there are no biomarkers for the detection of hypertensive target organ damage, most outstandingly including blood vessels, the heart, and the kidneys.We aimed to validate the usefulness of the urinary excretion of the serine protease kallikrein-related peptidase 9 (KLK9) as a biomarker of hypertension-induced target organ damage.Urinary, plasma, and renal tissue levels of KLK9 were measured by the Western blot in different rat models of hypertension, including angiotensin-II infusion, DOCA-salt, L-NAME administration, and spontaneous hypertension. Urinary levels were associated to cardiovascular and renal injury, assessed by histopathology. The origin of urinary KLK9 was investigated through in situ renal perfusion experiments.The urinary excretion of KLK9 is increased in different experimental models of hypertension in rats. The ACE inhibitor trandolapril significantly reduced arterial pressure and the urinary level of KLK9. Hypertension did not increase kidney, heart, liver, lung, or plasma KLK9 levels. Hypertension-induced increased urinary excretion of KLK9 results from specific alterations in its tubular reabsorption, even in the absence of overt nephropathy. KLK9 urinary excretion strongly correlates with cardiac hypertrophy and aortic wall thickening.KLK9 appears in the urine in the presence of hypertension as a result of subtle renal handling alterations. Urinary KLK9 might be potentially used as an indicator of hypertensive cardiac and vascular damage.


PLOS ONE | 2014

Hypertension and Hyperglycemia Synergize to Cause Incipient Renal Tubular Alterations Resulting in Increased NGAL Urinary Excretion in Rats

Ana M. Blázquez-Medela; Omar García-Sánchez; Víctor Blanco-Gozalo; Yaremi Quiros; María J. Montero; Carlos Martínez-Salgado; José M. López-Novoa; Francisco J. López-Hernández

Background Hypertension and diabetes are the two leading causes of chronic kidney disease (CKD) eventually leading to end stage renal disease (ESRD) and the need of renal replacement therapy. Mortality among CKD and ESRD patients is high, mostly due to cardiovascular events. New early markers of risk are necessary to better anticipate the course of the disease, to detect the renal affection of additive risk factors, and to appropriately handle patients in a pre-emptive and personalized manner. Methods Renal function and NGAL urinary excretion was monitored in rats with spontaneous (SHR) or L-NAME induced hypertension rendered hyperglycemic (or not as controls). Results Combination of hypertension and hyperglycemia (but not each of these factors independently) causes an increased urinary excretion of neutrophil gelatinase-associated lipocalin (NGAL) in the rat, in the absence of signs of renal damage. Increased NGAL excretion is observed in diabetic animals with two independent models of hypertension. Elevated urinary NGAL results from a specific alteration in its tubular handling, rather than from an increase in its renal expression. In fact, when kidneys of hyperglycaemic-hypertensive rats are perfused in situ with Krebs-dextran solution containing exogenous NGAL, they excrete more NGAL in the urine than hypertensive rats. We also show that albuminuria is not capable of detecting the additive effect posed by the coexistence of these two risk factors. Conclusions Our results suggest that accumulation of hypertension and hyperglycemia induces an incipient and quite specific alteration in the tubular handling of NGAL resulting in its increased urinary excretion.

Collaboration


Dive into the Yaremi Quiros's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge