Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yari Ciani is active.

Publication


Featured researches published by Yari Ciani.


PLOS ONE | 2012

GTSE1 is a microtubule plus-end tracking protein that regulates EB1-dependent cell migration.

Massimilano Scolz; Per O. Widlund; Silvano Piazza; Débora Rosa Bublik; Simone Reber; Leticia Y. Peche; Yari Ciani; Nina C. Hubner; Mayumi Isokane; Martin Monte; Jan Ellenberg; Anthony A. Hyman; Claudio Schneider; Alexander W. Bird

The regulation of cell migration is a highly complex process that is often compromised when cancer cells become metastatic. The microtubule cytoskeleton is necessary for cell migration, but how microtubules and microtubule-associated proteins regulate multiple pathways promoting cell migration remains unclear. Microtubule plus-end binding proteins (+TIPs) are emerging as important players in many cellular functions, including cell migration. Here we identify a +TIP, GTSE1, that promotes cell migration. GTSE1 accumulates at growing microtubule plus ends through interaction with the EB1+TIP. The EB1-dependent +TIP activity of GTSE1 is required for cell migration, as well as for microtubule-dependent disassembly of focal adhesions. GTSE1 protein levels determine the migratory capacity of both nontransformed and breast cancer cell lines. In breast cancers, increased GTSE1 expression correlates with invasive potential, tumor stage, and time to distant metastasis, suggesting that misregulation of GTSE1 expression could be associated with increased invasive potential.


Oncotarget | 2016

A gene expression signature of retinoblastoma loss-of-function is a predictive biomarker of resistance to palbociclib in breast cancer cell lines and is prognostic in patients with ER positive early breast cancer

Luca Malorni; Silvano Piazza; Yari Ciani; Cristina Guarducci; Martina Bonechi; Chiara Biagioni; Christopher D. Hart; Roberto Verardo; Angelo Di Leo; Ilenia Migliaccio

Palbociclib is a CDK4/6 inhibitor that received FDA approval for treatment of hormone receptor positive (HR+) HER2 negative (HER2neg) advanced breast cancer. To better personalize patients treatment it is critical to identify subgroups that would mostly benefit from it. We hypothesize that complex alterations of the Retinoblastoma (Rb) pathway might be implicated in resistance to CDK4/6 inhibitors and aim to investigate whether signatures of Rb loss-of-function would identify breast cancer cell lines resistant to palbociclib. We established a gene expression signature of Rb loss-of-function (RBsig) by identifying genes correlated with E2F1 and E2F2 expression in breast cancers within The Cancer Genome Atlas. We assessed the RBsig prognostic role in the METABRIC and in a comprehensive breast cancer meta-dataset. Finally, we analyzed whether RBsig would discriminate palbociclib-sensitive and -resistant breast cancer cells in a large RNA sequencing-based dataset. The RBsig was associated with RB1 genetic status in all tumors (p <7e-32) and in luminal or basal subtypes (p < 7e-11 and p < 0.002, respectively). The RBsig was prognostic in the METABRIC dataset (discovery: HR = 1.93 [1.5-2.4] p = 1.4e-08; validation: HR = 2.01 [1.6-2.5] p = 1.3e-09). Untreated and endocrine treated patients with estrogen receptor positive breast cancer expressing high RBsig had significantly worse recurrence free survival compared to those with low RBsig (HR = 2.37 [1.8 − 3.2] p = 1.87e−08 and HR = 2.62 [1.9− 3.5] p = 8.6e−11, respectively). The RBsig was able to identify palbociclib resistant and sensitive breast cancer cells (ROC AUC = 0,7778). Signatures of RB loss might be helpful in personalizing treatment of patients with HR+/HER2neg breast cancer. Further validation in patients receiving palbociclib is warranted.


Molecular & Cellular Proteomics | 2016

Translating Proteomic Into Functional Data: An High Mobility Group A1 (HMGA1) Proteomic Signature Has Prognostic Value in Breast Cancer

Elisa Maurizio; Jacek R. Wiśniewski; Yari Ciani; Laura Arnoldo; Carlotta Penzo; Silvia Pegoraro; Vincenzo Giancotti; Alberto Zambelli; Silvano Piazza; Guidalberto Manfioletti; Riccardo Sgarra

Cancer is a very heterogeneous disease, and biological variability adds a further level of complexity, thus limiting the ability to identify new genes involved in cancer development. Oncogenes whose expression levels control cell aggressiveness are very useful for developing cellular models that permit differential expression screenings in isogenic contexts. HMGA1 protein has this unique property because it is a master regulator in breast cancer cells that control the transition from a nontumorigenic epithelial-like phenotype toward a highly aggressive mesenchymal-like one. The proteins extracted from HMGA1-silenced and control MDA-MB-231 cells were analyzed using label-free shotgun mass spectrometry. The differentially expressed proteins were cross-referenced with DNA microarray data obtained using the same cellular model and the overlapping genes were filtered for factors linked to poor prognosis in breast cancer gene expression meta-data sets, resulting in an HMGA1 protein signature composed of 21 members (HRS, HMGA1 reduced signature). This signature had a prognostic value (overall survival, relapse-free survival, and distant metastasis-free survival) in breast cancer. qRT-PCR, Western blot, and immunohistochemistry analyses validated the link of three members of this signature (KIFC1, LRRC59, and TRIP13) with HMGA1 expression levels both in vitro and in vivo and wound healing assays demonstrated that these three proteins are involved in modulating tumor cell motility. Combining proteomic and genomic data with the aid of bioinformatic tools, our results highlight the potential involvement in neoplastic transformation of a restricted list of factors with an as-yet-unexplored role in cancer. These factors are druggable targets that could be exploited for the development of new, targeted therapeutic approaches in triple-negative breast cancer.


International Journal of Cardiology | 2016

Critical role of lysosomes in the dysfunction of human Cardiac Stem Cells obtained from failing hearts

Giuseppe Gianfranceschi; Angela Caragnano; Silvano Piazza; Ivana Manini; Yari Ciani; Roberto Verardo; Barbara Toffoletto; Nicoletta Finato; Ugolino Livi; Carlo Alberto Beltrami; G. Scoles; Gianfranco Sinagra; Aneta Aleksova; Daniela Cesselli; Antonio Paolo Beltrami

UNLABELLED The in vivo reparative potential of Cardiac Stem Cells (CSC), cultured from explanted failing hearts (E-), is impaired by cellular senescence. Moreover, E-CSC are characterized, with respect to CSC obtained from healthy donors (D-), by an arrest in the autophagic degradation. Although the lysosome plays a pivotal role in cellular homeostasis and defects of this organelle may be associated with aging and heart failure, the lysosomal function of CSC has never been investigated. The aim of this work was to focus on the Lysosomal Compartment (LC) of E-CSC, evaluating elements that could jeopardize lysosome functionality. METHODS AND RESULTS Bioinformatics analysis conducted on genes differentially expressed between D- and E-CSC identified lysosomal-related gene sets as significantly enriched. Moreover, 29 differentially expressed genes were part of CLEAR (Coordinated Lysosomal Expression and Regulation) gene network, by which Transcription Factor EB (TFEB) regulates cellular clearance. Consistently, live cell imaging and flow cytometry analyses showed that the lysosomes of E-CSC are less acidic than the D-CSC ones. Furthermore, confocal microscopy showed in E-CSC: an accumulation of intralysosomal lipofuscins, a reduction of cathepsin B activity, evidence of lysosome membrane permeabilization, and the reduction of the nuclear active TFEB. The use of Rapamycin (TORC1 inhibitor) was able on one hand to increase TFEB activation and, on the other hand, to reduce lipofuscin mass, potentiating the lysosomal functionality. CONCLUSIONS This study demonstrated for the first time that E-CSC are characterized by a blunted activation of TFEB and an altered proteostasis. TORC1 hyperactivation plays a central role in this phenomenon.


Cell Death & Differentiation | 2017

PIN1 in breast development and cancer: a clinical perspective.

Alessandra Rustighi; Alessandro Zannini; Elena Campaner; Yari Ciani; Silvano Piazza; Giannino Del Sal

Mammary gland development, various stages of mammary tumorigenesis and breast cancer progression have the peptidyl-prolyl cis/trans isomerase PIN1 at their centerpiece, in virtue of the ability of this unique enzyme to fine-tune the dynamic crosstalk between multiple molecular pathways. PIN1 exerts its action by inducing conformational and functional changes on key cellular proteins, following proline-directed phosphorylation. Through this post-phosphorylation signal transduction mechanism, PIN1 controls the extent and direction of the cellular response to a variety of inputs, in physiology and disease. This review discusses PIN1’s roles in normal mammary development and cancerous progression, as well as the clinical impact of targeting this enzyme in breast cancer patients.


Stem Cells | 2014

Specific Mesothelial Signature Marks the Heterogeneity of Mesenchymal Stem Cells From High‐Grade Serous Ovarian Cancer

Roberto Verardo; Silvano Piazza; Enio Klaric; Yari Ciani; Giulio Bussadori; Stefania Marzinotto; Laura Mariuzzi; Daniela Cesselli; Antonio Paolo Beltrami; Miguel Mano; Masayoshi Itoh; Hideya Kawaji; Timo Lassmann; Piero Carninci; Yoshihide Hayashizaki; Alistair R. R. Forrest; Carlo Alberto Beltrami; Claudio Schneider

Mesenchymal stem/stromal cells (MSCs) are the precursors of various cell types that compose both normal and cancer tissue microenvironments. In order to support the widely diversified parenchymal cells and tissue organization, MSCs are characterized by a large degree of heterogeneity, although available analyses of molecular and transcriptional data do not provide clear evidence. We have isolated MSCs from high‐grade serous ovarian cancers (HG‐SOCs) and various normal tissues (N‐MSCs), demonstrated their normal genotype and analyzed their transcriptional activity with respect to the large comprehensive FANTOM5 sample dataset. Our integrative analysis conducted against the extensive panel of primary cells and tissues of the FANTOM5 project allowed us to mark the HG‐SOC‐MSCs CAGE‐seq transcriptional heterogeneity and to identify a cell‐type‐specific transcriptional activity showing a significant relationship with primary mesothelial cells. Our analysis shows that MSCs isolated from different tissues are highly heterogeneous. The mesothelial‐related gene signature identified in this study supports the hypothesis that HG‐SOC‐MSCs are bona fide representatives of the ovarian district. This finding indicates that HG‐SOC‐MSCs could actually derive from the coelomic mesothelium, suggesting that they might be linked to the epithelial tumor through common embryological precursors. Stem Cells 2014;32:2998–3011


Nature Communications | 2017

A covalent PIN1 inhibitor selectively targets cancer cells by a dual mechanism of action

Elena Campaner; Alessandra Rustighi; Alessandro Zannini; Alberto Cristiani; Silvano Piazza; Yari Ciani; Ori Kalid; Gali Golan; Erkan Baloglu; Sharon Shacham; Barbara Valsasina; Ulisse Cucchi; Agnese Chiara Pippione; Marco L. Lolli; Barbara Giabbai; Paola Storici; Paolo Carloni; Giulia Rossetti; Federica Benvenuti; Ezia Bello; Maurizio D'Incalci; Elisa Cappuzzello; Antonio Rosato; Giannino Del Sal

The prolyl isomerase PIN1, a critical modifier of multiple signalling pathways, is overexpressed in the majority of cancers and its activity strongly contributes to tumour initiation and progression. Inactivation of PIN1 function conversely curbs tumour growth and cancer stem cell expansion, restores chemosensitivity and blocks metastatic spread, thus providing the rationale for a therapeutic strategy based on PIN1 inhibition. Notwithstanding, potent PIN1 inhibitors are still missing from the arsenal of anti-cancer drugs. By a mechanism-based screening, we have identified a novel covalent PIN1 inhibitor, KPT-6566, able to selectively inhibit PIN1 and target it for degradation. We demonstrate that KPT-6566 covalently binds to the catalytic site of PIN1. This interaction results in the release of a quinone-mimicking drug that generates reactive oxygen species and DNA damage, inducing cell death specifically in cancer cells. Accordingly, KPT-6566 treatment impairs PIN1-dependent cancer phenotypes in vitro and growth of lung metastasis in vivo.


Scientific Reports | 2017

HMGA1 regulates the Plasminogen activation system in the secretome of breast cancer cells

Giulia Resmini; Serena Rizzo; Cinzia Franchin; Rossella Zanin; Carlotta Penzo; Silvia Pegoraro; Yari Ciani; Silvano Piazza; Giorgio Arrigoni; Riccardo Sgarra; Guidalberto Manfioletti

Cancer cells secrete proteins that modify the extracellular environment acting as autocrine and paracrine stimulatory factors and have a relevant role in cancer progression. The HMGA1 oncofetal protein has a prominent role in controlling the expression of an articulated set of genes involved in various aspect of cancer cell transformation. However, little is known about its role in influencing the secretome of cancer cells. Performing an iTRAQ LC–MS/MS screening for the identification of secreted proteins, in an inducible model of HMGA1 silencing in breast cancer cells, we found that HMGA1 has a profound impact on cancer cell secretome. We demonstrated that the pool of HMGA1–linked secreted proteins has pro–migratory and pro-invasive stimulatory roles. From an inspection of the HMGA1–dependent secreted factors it turned out that HMGA1 influences the presence in the extra cellular milieu of key components of the Plasminogen activation system (PLAU, SERPINE1, and PLAUR) that has a prominent role in promoting metastasis, and that HMGA1 has a direct role in regulating the transcription of two of them, i.e. PLAU and SERPINE1. The ability of HMGA1 to regulate the plasminogen activator system may constitute an important mechanism by which HMGA1 promotes cancer progression.


Oncogene | 2017

OCT4 controls mitotic stability and inactivates the RB tumor suppressor pathway to enhance ovarian cancer aggressiveness

E Comisso; M Scarola; M Rosso; Silvano Piazza; Stefania Marzinotto; Yari Ciani; M Orsaria; Laura Mariuzzi; Claudio Schneider; Stefan Schoeftner; Roberta Benetti

OCT4 (Octamer-binding transcription factor 4) is essential for embryonic stem cell self-renewal. Here we show that OCT4 increases the aggressiveness of high-grade serous ovarian cancer (HG-SOC) by inactivating the Retinoblastoma tumor suppressor pathway and enhancing mitotic stability in cancer cells. OCT4 drives the expression of Nuclear Inhibitor of Protein Phosphatase type 1 (NIPP1) and Cyclin F (CCNF) that together inhibit Protein Phosphatase 1 (PP1). This results in pRB hyper-phosphorylation, accelerated cell proliferation and increased in vitro tumorigenicity of ovarian cancer cells. In parallel, OCT4 and NIPP1/CCNF drive the expression of the central Chromosomal Passenger Complex (CPC) components, Borealin, Survivin and the mitotic kinase Aurora B, promoting the clustering of supernumerary centrosomes to increase mitotic stability. Loss of OCT4 or NIPP1/CCNF results in severe mitotic defects, multipolar spindles and supernumerary centrosomes, finally leading to the induction of apoptosis. These phenotypes were recapitulated in different cancer models indicating general relevance for human cancer. Importantly, activation of these parallel pathways leads to dramatically reduced overall survival of HG-SOC patients. Altogether, our data highlights an unprecedented role for OCT4 as central regulator of mitotic fidelity and RB tumor suppressor pathway activity. Disrupting this pathway represents a promising strategy to target an aggressive subpopulation of HG-SOC cells.


Nature Communications | 2017

Mammalian APE1 controls miRNA processing and its interactome is linked to cancer RNA metabolism

Giulia Antoniali; Fabrizio Serra; Lisa Lirussi; Mikiei Tanaka; Chiara D’Ambrosio; Shiheng Zhang; Slobodanka Radovic; Emiliano Dalla; Yari Ciani; Andrea Scaloni; Mengxia Li; Silvano Piazza; Gianluca Tell

Mammalian apurinic/apyrimidinic endonuclease 1 is a DNA repair enzyme involved in genome stability and expression of genes involved in oxidative stress responses, tumor progression and chemoresistance. However, the molecular mechanisms underlying the role of apurinic/apyrimidinic endonuclease 1 in these processes are still unclear. Recent findings point to a novel role of apurinic/apyrimidinic endonuclease 1 in RNA metabolism. Through the characterization of the interactomes of apurinic/apyrimidinic endonuclease 1 with RNA and other proteins, we demonstrate here a role for apurinic/apyrimidinic endonuclease 1 in pri-miRNA processing and stability via association with the DROSHA-processing complex during genotoxic stress. We also show that endonuclease activity of apurinic/apyrimidinic endonuclease 1 is required for the processing of miR-221/222 in regulating expression of the tumor suppressor PTEN. Analysis of a cohort of different cancers supports the relevance of our findings for tumor biology. We also show that apurinic/apyrimidinic endonuclease 1 participates in RNA-interactomes and protein-interactomes involved in cancer development, thus indicating an unsuspected post-transcriptional effect on cancer genes.APE1 plays an important role in the cellular response to oxidative stress, and mutations are linked to tumor progression and chemoresistance. Here, the authors characterize the interactions of APE1 with RNA and demonstrate a role in microRNA processing.

Collaboration


Dive into the Yari Ciani's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge