Yaron Lipman
Weizmann Institute of Science
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Yaron Lipman.
symposium on geometry processing | 2004
Olga Sorkine; Daniel Cohen-Or; Yaron Lipman; Marc Alexa; Christian Rössl; Hans-Peter Seidel
Surface editing operations commonly require geometric details of the surface to be preserved as much as possible. We argue that geometric detail is an intrinsic property of a surface and that, consequently, surface editing is best performed by operating over an intrinsic surface representation. We provide such a representation of a surface, based on the Laplacian of the mesh, by encoding each vertex relative to its neighborhood. The Laplacian of the mesh is enhanced to be invariant to locally linearized rigid transformations and scaling. Based on this Laplacian representation, we develop useful editing operations: interactive free-form deformation in a region of interest based on the transformation of a handle, transfer and mixing of geometric details between two surfaces, and transplanting of a partial surface mesh onto another surface. The main computation involved in all operations is the solution of a sparse linear system, which can be done at interactive rates. We demonstrate the effectiveness of our approach in several examples, showing that the editing operations change the shape while respecting the structural geometric detail.
international conference on computer graphics and interactive techniques | 2005
Yaron Lipman; Olga Sorkine; David Levin; Daniel Cohen-Or
We introduce a rigid motion invariant mesh representation based on discrete forms defined on the mesh. The reconstruction of mesh geometry from this representation requires solving two sparse linear systems that arise from the discrete forms: the first system defines the relationship between local frames on the mesh, and the second encodes the position of the vertices via the local frames. The reconstructed geometry is unique up to a rigid transformation of the mesh. We define surface editing operations by placing user-defined constraints on the local frames and the vertex positions. These constraints are incorporated in the two linear reconstruction systems, and their solution produces a deformed surface geometry that preserves the local differential properties in the least-squares sense. Linear combination of shapes expressed with our representation enables linear shape interpolation that correctly handles rotations. We demonstrate the effectiveness of the new representation with various detail-preserving editing operators and shape morphing.
international conference on computer graphics and interactive techniques | 2008
Yaron Lipman; David Levin; Daniel Cohen-Or
We introduce Green Coordinates for closed polyhedral cages. The coordinates are motivated by Greens third integral identity and respect both the vertices position and faces orientation of the cage. We show that Green Coordinates lead to space deformations with a shape-preserving property. In particular, in 2D they induce conformal mappings, and extend naturally to quasi-conformal mappings in 3D. In both cases we derive closed-form expressions for the coordinates, yielding a simple and fast algorithm for cage-based space deformation. We compare the performance of Green Coordinates with those of Mean Value Coordinates and Harmonic Coordinates and show that the advantage of the shape-preserving property is not achieved at the expense of speed or simplicity. We also show that the new coordinates extend the mapping in a natural analytic manner to the exterior of the cage, allowing the employment of partial cages.
Proceedings Shape Modeling Applications, 2004. | 2004
Yaron Lipman; Olga Sorkine; Daniel Cohen-Or; David Levin; C. Rossi; Hans-Peter Seidel
One of the main challenges in editing a mesh is to retain the visual appearance of the surface after applying various modifications. In this paper we advocate the use of linear differential coordinates as means to preserve the high-frequency detail of the surface. The differential coordinates represent the details and are defined by a linear transformation of the mesh vertices. This allows the reconstruction of the edited surface by solving a linear system that satisfies the reconstruction of the local details in least squares sense. Since the differential coordinates are defined in a global coordinate system they are not rotation-invariant. To compensate for that, we rotate them to agree with the rotation of an approximated local frame. We show that the linear least squares system can be solved fast enough to guarantee interactive response time thanks to a precomputed factorization of the coefficient matrix. We demonstrate that our approach enables to edit complex detailed meshes while keeping the shape of the details in their natural orientation.
international conference on computer graphics and interactive techniques | 2009
Zeev Farbman; Gil Hoffer; Yaron Lipman; Daniel Cohen-Or; Dani Lischinski
Seamless cloning of a source image patch into a target image is an important and useful image editing operation, which has received considerable research attention in recent years. This operation is typically carried out by solving a Poisson equation with Dirichlet boundary conditions, which smoothly interpolates the discrepancies between the boundary of the source patch and the target across the entire cloned area. In this paper we introduce an alternative, coordinate-based approach, where rather than solving a large linear system to perform the aforementioned interpolation, the value of the interpolant at each interior pixel is given by a weighted combination of values along the boundary. More specifically, our approach is based on Mean-Value Coordinates (MVC). The use of coordinates is advantageous in terms of speed, ease of implementation, small memory footprint, and parallelizability, enabling real-time cloning of large regions, and interactive cloning of video streams. We demonstrate a number of applications and extensions of the coordinate-based framework.
Computer Graphics Forum | 2007
Ofir Weber; Olga Sorkine; Yaron Lipman; Craig Gotsman
We describe a system for the animation of a skeleton‐controlled articulated object that preserves the fine geometric details of the object skin and conforms to the characteristic shapes of the object specified through a set of examples. The system provides the animator with an intuitive user interface and produces compelling results even when presented with a very small set of examples. In addition it is able to generalize well by extrapolating far beyond the examples.
ACM Transactions on Graphics | 2010
Yaron Lipman; Raif M. Rustamov; Thomas A. Funkhouser
Measuring distances between pairs of points on a 3D surface is a fundamental problem in computer graphics and geometric processing. For most applications, the important properties of a distance are that it is a metric, smooth, locally isotropic, globally “shape-aware,” isometry-invariant, insensitive to noise and small topology changes, parameter-free, and practical to compute on a discrete mesh. However, the basic methods currently popular in computer graphics (e.g., geodesic and diffusion distances) do not have these basic properties. In this article, we propose a new distance measure based on the biharmonic differential operator that has all the desired properties. This new surface distance is related to the diffusion and commute-time distances, but applies different (inverse squared) weighting to the eigenvalues of the Laplace-Beltrami operator, which provides a nice trade-off between nearly geodesic distances for small distances and global shape-awareness for large distances. The article provides theoretical and empirical analysis for a large number of meshes.
international conference on computer graphics and interactive techniques | 2012
Yaron Lipman
The problem of mapping triangular meshes into the plane is fundamental in geometric modeling, where planar deformations and surface parameterizations are two prominent examples. Current methods for triangular mesh mappings cannot, in general, control the worst case distortion of all triangles nor guarantee injectivity. This paper introduces a constructive definition of generic convex spaces of piecewise linear mappings with guarantees on the maximal conformal distortion, as-well as local and global injectivity of their maps. It is shown how common geometric processing objective functionals can be restricted to these new spaces, rather than to the entire space of piecewise linear mappings, to provide a bounded distortion version of popular algorithms.
international conference on computer graphics and interactive techniques | 2007
Yaron Lipman; Daniel Cohen-Or; David Levin; Hillel Tal-Ezer
We introduce a Locally Optimal Projection operator (LOP) for surface approximation from point-set data. The operator is parameterization free, in the sense that it does not rely on estimating a local normal, fitting a local plane, or using any other local parametric representation. Therefore, it can deal with noisy data which clutters the orientation of the points. The method performs well in cases of ambiguous orientation, e.g., if two folds of a surface lie near each other, and other cases of complex geometry in which methods based upon local plane fitting may fail. Although defined by a global minimization problem, the method is effectively local, and it provides a second order approximation to smooth surfaces. Hence allowing good surface approximation without using any explicit or implicit approximation space. Furthermore, we show that LOP is highly robust to noise and outliers and demonstrate its effectiveness by applying it to raw scanned data of complex shapes.
Proceedings of the National Academy of Sciences of the United States of America | 2011
Doug M. Boyer; Yaron Lipman; Elizabeth M. St. Clair; Jesus Puente; Biren A. Patel; Thomas A. Funkhouser; Jukka Jernvall; Ingrid Daubechies
We describe approaches for distances between pairs of two-dimensional surfaces (embedded in three-dimensional space) that use local structures and global information contained in interstructure geometric relationships. We present algorithms to automatically determine these distances as well as geometric correspondences. This approach is motivated by the aspiration of students of natural science to understand the continuity of form that unites the diversity of life. At present, scientists using physical traits to study evolutionary relationships among living and extinct animals analyze data extracted from carefully defined anatomical correspondence points (landmarks). Identifying and recording these landmarks is time consuming and can be done accurately only by trained morphologists. This necessity renders these studies inaccessible to nonmorphologists and causes phenomics to lag behind genomics in elucidating evolutionary patterns. Unlike other algorithms presented for morphological correspondences, our approach does not require any preliminary marking of special features or landmarks by the user. It also differs from other seminal work in computational geometry in that our algorithms are polynomial in nature and thus faster, making pairwise comparisons feasible for significantly larger numbers of digitized surfaces. We illustrate our approach using three datasets representing teeth and different bones of primates and humans, and show that it leads to highly accurate results.