Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yaroslava Lykhach is active.

Publication


Featured researches published by Yaroslava Lykhach.


Nature Materials | 2011

Support nanostructure boosts oxygen transfer to catalytically active platinum nanoparticles

Georgi N. Vayssilov; Yaroslava Lykhach; Annapaola Migani; Thorsten Staudt; Galina P. Petrova; Nataliya Tsud; Tomáš Skála; Albert Bruix; Francesc Illas; Kevin C. Prince; Vladimı´r Matolı´n; Konstantin M. Neyman; Jörg Libuda

Interactions of metal particles with oxide supports can radically enhance the performance of supported catalysts. At the microscopic level, the details of such metal-oxide interactions usually remain obscure. This study identifies two types of oxidative metal-oxide interaction on well-defined models of technologically important Pt-ceria catalysts: (1) electron transfer from the Pt nanoparticle to the support, and (2) oxygen transfer from ceria to Pt. The electron transfer is favourable on ceria supports, irrespective of their morphology. Remarkably, the oxygen transfer is shown to require the presence of nanostructured ceria in close contact with Pt and, thus, is inherently a nanoscale effect. Our findings enable us to detail the formation mechanism of the catalytically indispensable Pt-O species on ceria and to elucidate the extraordinary structure-activity dependence of ceria-based catalysts in general.


Chemistry: A European Journal | 2010

Methane Activation by Platinum: Critical Role of Edge and Corner Sites of Metal Nanoparticles

Francesc Viñes; Yaroslava Lykhach; Thorsten Staudt; Michael P. A. Lorenz; Christian Papp; Hans-Peter Steinrück; Jörg Libuda; Konstantin M. Neyman; Andreas Görling

Complete dehydrogenation of methane is studied on model Pt catalysts by means of state-of-the-art DFT methods and by a combination of supersonic molecular beams with high-resolution photoelectron spectroscopy. The DFT results predict that intermediate species like CH(3) and CH(2) are specially stabilized at sites located at particles edges and corners by an amount of 50-80 kJ mol(-1). This stabilization is caused by an enhanced activity of low-coordinated sites accompanied by their special flexibility to accommodate adsorbates. The kinetics of the complete dehydrogenation of methane is substantially modified according to the reaction energy profiles when switching from Pt(111) extended surfaces to Pt nanoparticles. The CH(3) and CH(2) formation steps are endothermic on Pt(111) but markedly exothermic on Pt(79). An important decrease of the reaction barriers is observed in the latter case with values of approximately 60 kJ mol(-1) for first C-H bond scission and 40 kJ mol(-1) for methyl decomposition. DFT predictions are experimentally confirmed by methane decomposition on Pt nanoparticles supported on an ordered CeO(2) film on Cu(111). It is shown that CH(3) generated on the Pt nanoparticles undergoes spontaneous dehydrogenation at 100 K. This is in sharp contrast to previous results on Pt single-crystal surfaces in which CH(3) was stable up to much higher temperatures. This result underlines the critical role of particle edge sites in methane activation and dehydrogenation.


Chemistry: A European Journal | 2011

Dehydrogenation of Dodecahydro-N-ethylcarbazole on Pd/Al2O3 Model Catalysts

Marek Sobota; Ioannis Nikiforidis; Max Amende; Beatriz Sanmartín Zanón; Thorsten Staudt; Oliver Höfert; Yaroslava Lykhach; Christian Papp; Wolfgang Hieringer; Mathias Laurin; Daniel Assenbaum; Peter Wasserscheid; Hans-Peter Steinrück; Andreas Görling; Jörg Libuda

To elucidate the dehydrogenation mechanism of dodecahydro-N-ethylcarbazole (H(12)-NEC) on supported Pd catalysts, we have performed a model study under ultra high vacuum (UHV) conditions. H(12)-NEC and its final dehydrogenation product, N-ethylcarbazole (NEC), were deposited by physical vapor deposition (PVD) at temperatures between 120 K and 520 K onto a supported model catalyst, which consisted of Pd nanoparticles grown on a well-ordered alumina film on NiAl(110). Adsorption and thermally induced surface reactions were followed by infrared reflection absorption spectroscopy (IRAS) and high-resolution X-ray photoelectron spectroscopy (HR-XPS) in combination with density functional theory (DFT) calculations. It was shown that, at 120 K, H(12)-NEC adsorbs molecularly both on the Al(2)O(3)/NiAl(110) support and on the Pd particles. Initial activation of the molecule occurs through C-H bond scission at the 8a- and 9a-positions of the carbazole skeleton at temperatures above 170 K. Dehydrogenation successively proceeds with increasing temperature. Around 350 K, breakage of one C-N bond occurs accompanied by further dehydrogenation of the carbon skeleton. The decomposition intermediates reside on the surface up to 500 K. At higher temperatures, further decay to small fragments and atomic species is observed. These species block most of the absorption sites on the Pd particles, but can be oxidatively removed by heating in oxygen at 600 K, fully restoring the original adsorption properties of the model catalyst.


ChemPhysChem | 2010

Microscopic Insights into Methane Activation and Related Processes on Pt/Ceria Model Catalysts

Yaroslava Lykhach; Thorsten Staudt; Michael P. A. Lorenz; R. Streber; A. Bayer; Hans-Peter Steinrück; Jörg Libuda

Ceria-based supported noble-metal catalysts release oxygen, which may help to reduce the formation of carbonaceous residues, for example during hydrocarbon reforming. To gain insight into the microscopic origins of these effects, a model study is performed under ultrahigh-vacuum conditions using single-crystal-based supported model catalysts. The model systems are based on ordered CeO(2)(111) films on Cu(111), on which Pt nanoparticles are grown by physical vapor deposition. The growth and structure of the surfaces are characterized by means of scanning tunneling microscopy, and the electronic structure and reactivity are probed by X-ray photoelectron spectroscopy. Specifically, it is shown that the fully oxidized CeO(2) thin films undergo slight reduction upon Pt deposition (CeO(1.99)). This effect is enhanced upon annealing (CeO(1.96)), thus indicating facile oxygen release and reverse spillover. The model system is structurally stable up to temperatures exceeding 700 K. The activation of methane is investigated using high-kinetic-energy CH(4) (0.83 eV), generated by a supersonic molecular beam. It is shown that dehydrogenation occurs under rapid formation of CH or C species without detectable amounts of CH(3) being formed, even at low temperatures (100 K). The released hydrogen spills over to the CeO(2) support, which leads to the formation of OH groups. At 200 K and above, the OH groups start to decompose leaving additional Ce(3+) centers behind (CeO(1.97-1.94)). At up to 700 K, carbon deposits are quantitatively removed by reaction with oxygen, which is supplied by reverse spillover from the CeO(2) film, thus leading to substantial reduction of the support (approximately CeO(1.90-1.85)).


Journal of Physical Chemistry Letters | 2013

Functionalization of Oxide Surfaces through Reaction with 1,3-Dialkylimidazolium Ionic Liquids.

Stefan Schernich; Mathias Laurin; Yaroslava Lykhach; Hans-Peter Steinrück; Nataliya Tsud; Tomáš Skála; Kevin C. Prince; Nicola Taccardi; Vladimír Matolín; Peter Wasserscheid; Jörg Libuda

Practical applications of ionic liquids (ILs) often involve IL/oxide interfaces, but little is known regarding their interfacial chemistry. The unusual physicochemical properties of ILs, including their exceptionally low vapor pressure, provide access to such interfaces using a surface science approach in ultrahigh vacuum (UHV). We have applied synchrotron radiation photoelectron spectroscopy (SR-PES) to the study of a thin film of the ionic liquid [C6C1Im][Tf2N] prepared in situ in UHV on ordered stoichiometric CeO2(111) and partially reduced CeO2-x. On the partially reduced surface, we mostly observe decomposition of the anion. On the stoichiometric CeO2(111) surface, however, a layer of surface-anchored organic products with high thermal stability is formed upon reaction of the cation. The suggested acid-base reaction pathway may provide well-defined functionalized IL/solid interfaces on basic oxides.


ChemPhysChem | 2008

Interaction of NO2 with Model NSR Catalysts: Metal–Oxide Interaction Controls Initial NOx Storage Mechanism

Aine Desikusumastuti; Thorsten Staudt; Zhihui Qin; Markus Happel; Mathias Laurin; Yaroslava Lykhach; Shamil K. Shaikhutdinov; Friedemann Rohr; Jörg Libuda

Using scanning tunneling microscopy (STM), molecular-beam (MB) methods and time-resolved infrared reflection absorption spectroscopy (TR-IRAS), we investigate the mechanism of initial NO(x) uptake on a model nitrogen storage and reduction (NSR) catalyst. The model system is prepared by co-deposition of Pd metal particles and Ba-containing oxide particles onto an ordered alumina film on NiAl(110). We show that the metal-oxide interaction between the active noble metal particles and the NO(x) storage compound in NSR model catalysts plays an important role in the reaction mechanism. We suggest that strong interaction facilitates reverse spillover of activated oxygen species from the NO(x) storage compound to the metal. This process leads to partial oxidation of the metal nanoparticles and simultaneous stabilization of the surface nitrite intermediate.


ChemPhysChem | 2013

Interactions of Imidazolium-Based Ionic Liquids with Oxide Surfaces Controlled by Alkyl Chain Functionalization

Stefan Schernich; Mathias Laurin; Yaroslava Lykhach; Nataliya Tsud; Marek Sobota; Tomáš Skála; Kevin C. Prince; Nicola Taccardi; Valentin Wagner; Hans-Peter Steinrück; Vladimír Matolín; Peter Wasserscheid; Jörg Libuda

From a different angle: Thin films of functionalized ionic liquids are deposited on cerium oxides following a surface science approach. The functionalization of the alkyl chain changes its orientation with respect to the surface plane from normal to parallel. This then leads to a different surface chemistry at higher temperatures.


Catalysis Science & Technology | 2017

Oxide-based nanomaterials for fuel cell catalysis: the interplay between supported single Pt atoms and particles

Yaroslava Lykhach; Albert Bruix; Stefano Fabris; V. Potin; Iva Matolínová; Vladimír Matolín; Jörg Libuda; Konstantin M. Neyman

The concept of single atom catalysis offers maximum noble metal efficiency for the development of low-cost catalytic materials. Among possible applications are catalytic materials for proton exchange membrane fuel cells. In the present review, recent efforts towards the fabrication of single atom catalysts on nanostructured ceria and their reactivity are discussed in the prospect of their employment as anode catalysts. The remarkable performance and the durability of the ceria-based anode catalysts with ultra-low Pt loading result from the interplay between two states associated with supported atomically dispersed Pt and sub-nanometer Pt particles. The occurrence of these two states is a consequence of strong interactions between Pt and nanostructured ceria that yield atomically dispersed species under oxidizing conditions and sub-nanometer Pt particles under reducing conditions. The square-planar arrangement of four O atoms on {100} nanoterraces has been identified as the key structural element on the surface of the nanostructured ceria where Pt is anchored in the form of Pt2+ species. The conversion of Pt2+ species to sub-nanometer Pt particles is triggered by a redox process involving Ce3+ centers. The latter emerge due to either oxygen vacancies or adsorption of reducing agents. The unique properties of the sub-nanometer Pt particles arise from metal–support interactions involving charge transfer, structural flexibility, and spillover phenomena. The abundance of specific adsorption sites similar to those on {100} nanoterraces determines the ideal (maximum) Pt loading in Pt–CeOx films that still allows reversible switching between the atomically dispersed Pt and sub-nanometer particles yielding high activity and durability during fuel cell operation.


Chemsuschem | 2014

The Mechanism of Hydrocarbon Oxygenate Reforming: CC Bond Scission, Carbon Formation, and Noble-Metal-Free Oxide Catalysts

Yaroslava Lykhach; Armin Neitzel; Klára Ševčíková; Viktor Johánek; Nataliya Tsud; Tomáš Skála; Kevin C. Prince; Vladimír Matolín; Jörg Libuda

Towards a molecular understanding of the mechanism behind catalytic reforming of bioderived hydrocarbon oxygenates, we explore the C-C bond scission of C2 model compounds (acetic acid, ethanol, ethylene glycol) on ceria model catalysts of different complexity, with and without platinum. Synchrotron photoelectron spectroscopy reveals that the reaction pathway depends very specifically on both the reactant molecule and the catalyst surface. Whereas C-C bond scission on Pt sites and on oxygen vacancies involves intermittent surface carbon species, the reaction occurs without any carbon formation and deposition for ethylene glycol on CeO2(111).


Physical Chemistry Chemical Physics | 2009

Nitrite and nitrate formation on model NOx storage materials: on the influence of particle size and composition

Aine Desikusumastuti; Zhihui Qin; Markus Happel; Thorsten Staudt; Yaroslava Lykhach; Mathias Laurin; Friedemann Rohr; Shamil K. Shaikhutdinov; Jörg Libuda

A well-defined model-catalyst approach has been utilized to study the formation and decomposition of nitrite and nitrate species on a model NO(x) storage material. The model system comprises BaAl(2x)O(1+3x) particles of different size and stoichiometry, prepared under ultrahigh-vacuum (UHV) conditions on Al(2)O(3)/NiAl(110). Adsorption and reaction of NO(2) has been investigated by molecular beam (MB) methods and time-resolved IR reflection absorption spectroscopy (TR-IRAS) in combination with structural characterization by scanning tunneling microscopy (STM). The growth behavior and chemical composition of the BaAl(2x)O(1+3x) particles has been investigated previously. In this work we focus on the effect of particle size and stoichiometry on the reaction with NO(2). Particles of different size and of different Ba(2+) : Al(3+) surface ion ratio are prepared by varying the preparation conditions. It is shown that at 300 K the reaction mechanism is independent of particle size and composition, involving initial nitrite formation and subsequent transformation of nitrites into surface nitrates. The coordination geometry of the surface nitrates, however, changes characteristically with particle size. For small BaAl(2x)O(1+3x) particles high temperature (800 K) oxygen treatment gives rise to particle ripening, which has a minor effect on the NO(2) uptake behavior, however. STM shows that the morphology of the particle system is largely conserved during NO(2) exposure at 300 K. The reaction is limited to the formation of surface nitrites and nitrates, which are characterized by low thermal stability and completely decompose below 500 K. As no further sintering occurs before decomposition, NO(2) uptake and release is a fully reversible process. For large BaAl(2x)O(1+3x) particles, aggregates with different Ba(2+) : Al(3+) surface ion ratio were prepared. It was shown that the stoichiometry has a major effect on the kinetics of NO(2) uptake. For barium-aluminate-like particles with high Al(3+) concentration, the formation of nitrites and nitrates on the BaAl(2x)O(1+3x) particles at 300 K is slow, and kinetically restricted to the formation of surface species. Only at elevated temperature (500 K) are surface nitrates converted into well-defined bulk Ba(NO(3))(2). This bulk Ba(NO(3))(2) exhibits substantially higher thermal stability and undergoes restructuring and sintering before it decomposes at 700 K. For Ba(2+)-rich BaAl(2x)O(1+3x) particles, on the other hand, nitrate formation occurs at a much higher rate than for the barium-aluminate-like particles. Furthermore, nitrate formation is not limited to the surface, but NO(2) exposure gives rise to the formation of amorphous bulk Ba(NO(3))(2) particles even at 300 K.

Collaboration


Dive into the Yaroslava Lykhach's collaboration.

Top Co-Authors

Avatar

Jörg Libuda

University of Erlangen-Nuremberg

View shared research outputs
Top Co-Authors

Avatar

Vladimír Matolín

Charles University in Prague

View shared research outputs
Top Co-Authors

Avatar

Tomáš Skála

Charles University in Prague

View shared research outputs
Top Co-Authors

Avatar

Nataliya Tsud

Charles University in Prague

View shared research outputs
Top Co-Authors

Avatar

Kevin C. Prince

Elettra Sincrotrone Trieste

View shared research outputs
Top Co-Authors

Avatar

Armin Neitzel

University of Erlangen-Nuremberg

View shared research outputs
Top Co-Authors

Avatar

Thorsten Staudt

University of Erlangen-Nuremberg

View shared research outputs
Top Co-Authors

Avatar

Mykhailo Vorokhta

Charles University in Prague

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Viktor Johánek

Charles University in Prague

View shared research outputs
Researchain Logo
Decentralizing Knowledge