Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yasir A. W. Skeiky is active.

Publication


Featured researches published by Yasir A. W. Skeiky.


Journal of Immunology | 2004

Differential Immune Responses and Protective Efficacy Induced by Components of a Tuberculosis Polyprotein Vaccine, Mtb72F, Delivered as Naked DNA or Recombinant Protein

Yasir A. W. Skeiky; Mark R. Alderson; Pamela J. Ovendale; Jeffrey Guderian; Lise Brandt; Davin C. Dillon; Antonio Campos-Neto; Yves Lobet; Wilfried Dalemans; Ian M. Orme; Steven G. Reed

Key Ags of Mycobacterium tuberculosis initially identified in the context of host responses in healthy purified protein derivative-positive donors and infected C57BL/6 mice were prioritized for the development of a subunit vaccine against tuberculosis. Our lead construct, Mtb72F, codes for a 72-kDa polyprotein genetically linked in tandem in the linear order Mtb32C-Mtb39-Mtb32N. Immunization of C57BL/6 mice with Mtb72F DNA resulted in the generation of IFN-γ responses directed against the first two components of the polyprotein and a strong CD8+ T cell response directed exclusively against Mtb32C. In contrast, immunization of mice with Mtb72F protein formulated in the adjuvant AS02A resulted in the elicitation of a moderate IFN-γ response and a weak CD8+ T cell response to Mtb32c. However, immunization with a formulation of Mtb72F protein in AS01B adjuvant generated a comprehensive and robust immune response, resulting in the elicitation of strong IFN-γ and Ab responses encompassing all three components of the polyprotein vaccine and a strong CD8+ response directed against the same Mtb32C epitope identified by DNA immunization. All three forms of Mtb72F immunization resulted in the protection of C57BL/6 mice against aerosol challenge with a virulent strain of M. tuberculosis. Most importantly, immunization of guinea pigs with Mtb72F, delivered either as DNA or as a rAg-based vaccine, resulted in prolonged survival (>1 year) after aerosol challenge with virulent M. tuberculosis comparable to bacillus Calmette-Guérin immunization. Mtb72F in AS02A formulation is currently in phase I clinical trial, making it the first recombinant tuberculosis vaccine to be tested in humans.


Nature Reviews Microbiology | 2006

Advances in tuberculosis vaccine strategies

Yasir A. W. Skeiky; Jerald C. Sadoff

Tuberculosis (TB), an ancient human scourge, is a growing health problem in the developing world. Approximately two million deaths each year are caused by TB, which is the leading cause of death in HIV-infected individuals. Clearly, an improved TB vaccine is desperately needed. Heterologous prime?boost regimens probably represent the best hope for an improved vaccine regimen to prevent TB. This first generation of new vaccines might also complement drug treatment regimens and be effective against reactivation of TB from the latent state, which would significantly enhance their usefulness.


Infection and Immunity | 2007

Protective immune responses to a recombinant adenovirus type 35 tuberculosis vaccine in two mouse strains: CD4 and CD8 T-cell epitope mapping and role of gamma interferon.

Katarina Radošević; Catharina W. Wieland; Ariane Rodriguez; Gerrit Jan Weverling; Ratna Mintardjo; Gert Gillissen; Ronald Vogels; Yasir A. W. Skeiky; David M. Hone; Jerald C. Sadoff; Tom van der Poll; Menzo Jans Emco Havenga; Jaap Goudsmit

ABSTRACT There is an urgent need for an efficacious vaccine against tuberculosis (TB). Cellular immune responses are key to an effective protective response against TB. Recombinant adenovirus (rAd) vectors are especially suited to the induction of strong T-cell immunity and thus represent promising vaccine vehicles for the prevention of TB. We have previously reported on rAd vector serotype 35, the serotype of choice due to low preexisting immunity worldwide, which expresses a unique fusion protein of Mycobacterium tuberculosis antigens Ag85A, Ag85B, and TB10.4 (Ad35-TBS). Here, we demonstrate that Ad35-TBS confers protection against M. tuberculosis when administered to mice through either an intranasal or an intramuscular route. Histological evaluation of lung tissue corroborated the protection and, in addition, demonstrated differences between two mouse strains, with diffuse inflammation in BALB/c mice and distinct granuloma formation in C57BL/6 mice. Epitope mapping analysis in these mouse strains showed that the major T-cell epitopes are conserved in the artificial fusion protein, while three novel CD8 peptides were discovered. Using a defined set of T-cell epitopes, we reveal differences between the two mouse strains in the type of protective immune response, demonstrating that different antigen-specific gamma interferon (IFN-γ)-producing T cells can provide protection against M. tuberculosis challenge. While in BALB/c (H-2d) mice, a dominant CD8 T-cell response was detected, in C57BL/6 (H-2b) mice, more balanced CD4/CD8 T-cell responses were observed, with a more pronounced CD4 response in the lungs. These results unify conflicting reports on the relative importance of CD4 versus CD8 T-cell responses in protection and emphasize the key role of IFN-γ.


Vaccine | 2002

Protective efficacy of a tandemly linked, multi-subunit recombinant leishmanial vaccine (Leish-111f) formulated in MPL® adjuvant

Yasir A. W. Skeiky; Rhea N. Coler; Mark Brannon; Erika Stromberg; Kay Greeson; R Thomas Crane; Antonio Campos-Neto; Steven G. Reed

Three immunodominant leishmanial antigens (TSA, LmSTI1 and LeIF) previously identified in the context of host response to infection in infected donors and BALB/c mice, as well as their ability to elicit at least partial protection against Leishmania major infection in the BALB/c mouse model, were selected for inclusion into a subunit based vaccine. This is based on the premise that an effective vaccine against leishmaniasis (a complex parasitic infection) would require a multivalent cocktail of several antigens containing a broader range of protective epitopes that would cover a wide range of MHC types in a heterogeneous population. For practical considerations of vaccine development, we report on the generation of a single recombinant polyprotein comprising the sequences of all three open reading frames genetically linked in tandem. The resulting molecule, Leish-111f, comprises an open reading frame that codes for a 111kDa polypeptide. Evaluation of the immunogenicity and protective efficacy of Leish-111f formulated with IL-12 revealed that the immune responses to the individual components were maintained and as well, rLeish-111f protected BALB/c mice against L. major infection to a magnitude equal or superior to those seen with any of the individual components of the vaccine construct or SLA, a soluble Leishmania lysate. But because rIL-12 is expensive and difficult to manufacture and its efficacy and safety as an adjuvant for human use is questionable, we screened for other adjuvants that could potentially substitute for IL-12. We report that monophosphoryl lipid A (MPL) plus squalene (MPL-SE) formulated with rLeish-111f elicited protective immunity against L. major infection. The demonstrated feasibility to manufacture a single recombinant vaccine comprising multiple protective open reading frames and the potential use of MPL-SE as a substitute for IL-12, takes us closer to the realization of an affordable and safe Leishmania vaccine.


Infection and Immunity | 2004

The Protective Effect of the Mycobacterium bovis BCG Vaccine Is Increased by Coadministration with the Mycobacterium tuberculosis 72-Kilodalton Fusion Polyprotein Mtb72F in M. tuberculosis-Infected Guinea Pigs

Lise Brandt; Yasir A. W. Skeiky; Mark R. Alderson; Yves Lobet; Wilfried Dalemans; Oliver C. Turner; Randall J. Basaraba; Angelo Izzo; Todd M. Lasco; Philip L. Chapman; Steven G. Reed; Ian M. Orme

ABSTRACT A tuberculosis vaccine candidate consisting of a 72-kDa polyprotein or fusion protein based upon the Mtb32 and Mtb39 antigens of Mycobacterium tuberculosis and designated Mtb72F was tested for its protective capacity as a potential adjunct to the Mycobacterium bovis BCG vaccine in the mouse and guinea pig models of this disease. Formulation of recombinant Mtb72F (rMtb72F) in an AS02A adjuvant enhanced the Th1 response to BCG in mice but did not further reduce the bacterial load in the lungs after aerosol challenge infection. In the more stringent guinea pig disease model, rMtb72F delivered by coadministration with BCG vaccination significantly improved the survival of these animals compared to BCG alone, with some animals still alive and healthy in their appearance at >100 weeks post-aerosol challenge. A similar trend was observed with guinea pigs in which BCG vaccination was boosted by DNA vaccination, although this increase was not statistically significant due to excellent protection conferred by BCG alone. Histological examination of the lungs of test animals indicated that while BCG controls eventually died from overwhelming lung consolidation, the majority of guinea pigs receiving BCG mixed with rMtb72F or boosted twice with Mtb72F DNA had mostly clear lungs with minimal granulomatous lesions. Lesions were still prominent in guinea pigs receiving BCG and the Mtb72F DNA boost, but there was considerable evidence of lesion healing and airway remodeling and reestablishment. These data support the hypothesis that the coadministration or boosting of BCG vaccination with Mtb72F may limit the lung consolidation seen with BCG alone and may promote lesion resolution and healing. Collectively, these data suggest that enhancing BCG is a valid vaccination strategy for tuberculosis that is worthy of clinical evaluation.


Journal of Immunology | 2001

The Potency and Durability of DNA- and Protein-Based Vaccines Against Leishmania major Evaluated Using Low-Dose, Intradermal Challenge

Susana Mendez; Sanjay Gurunathan; Shaden Kamhawi; Yasmine Belkaid; Michael A. Moga; Yasir A. W. Skeiky; Antonio Campos-Neto; Steven G. Reed; Robert A. Seder; David L. Sacks

DNA- and protein- based vaccines against cutaneous leishmaniasis due to Leishmania major were evaluated using a challenge model that more closely reproduces the pathology and immunity associated with sand fly-transmitted infection. C57BL/6 mice were vaccinated s.c. with a mixture of plasmid DNAs encoding the Leishmania Ags LACK, LmSTI1, and TSA (AgDNA), or with autoclaved L. major promastigotes (ALM) plus rIL-12, and the mice were challenged by inoculation of 100 metacyclic promastigotes in the ear dermis. When challenged at 2 wk postvaccination, mice receiving AgDNA or ALM/rIL-12 were completely protected against the development of dermal lesions, and both groups had a 100-fold reduction in peak dermal parasite loads compared with controls. When challenged at 12 wk, mice vaccinated with ALM/rIL-12 maintained partial protection against dermal lesions and their parasite loads were no longer significantly reduced, whereas the mice vaccinated with AgDNA remained completely protected and had a 1000-fold reduction in dermal parasite loads. Mice vaccinated with AgDNA also harbored few, if any, parasites in the skin during the chronic phase, and their ability to transmit L. major to vector sand flies was completely abrogated. The durable protection in mice vaccinated with AgDNA was associated with the recruitment of both CD8+ and CD4+ T cells to the site of intradermal challenge and with IFN-γ production by CD8+ T cells in lymph nodes draining the challenge site. These data suggest that under conditions of natural challenge, DNA vaccination has the capacity to confer complete protection against cutaneous leishmaniasis and to prevent the establishment of infection reservoirs.


Infection and Immunity | 2002

Immunization with a Polyprotein Vaccine Consisting of the T-Cell Antigens Thiol-Specific Antioxidant, Leishmania major Stress-Inducible Protein 1, and Leishmania Elongation Initiation Factor Protects against Leishmaniasis

Rhea N. Coler; Yasir A. W. Skeiky; Karen Bernards; Kay Greeson; Darrick Carter; Charisa D. Cornellison; Farrokh Modabber; Antonio Campos-Neto; Steven G. Reed

ABSTRACT Development of an effective vaccine against Leishmania infection is a priority of tropical disease research. We have recently demonstrated protection against Leishmania major in the murine and nonhuman primate models with individual or combinations of purified leishmanial recombinant antigens delivered as plasmid DNA constructs or formulated with recombinant interleukin-12 (IL-12) as adjuvant. In the present study, we immunized BALB/c mice with a recombinant polyprotein comprising a tandem fusion of the leishmanial antigens thiol-specific antioxidant, L. major stress-inducible protein 1 (LmSTI1), and Leishmania elongation initiation factor (LeIF) delivered with adjuvants suitable for human use. Aspects of the safety, immunogenicity, and vaccine efficacy of formulations with each individual component, as well as the polyprotein referred to as Leish-111f, were assessed by using the L. major challenge model with BALB/c mice. No adverse reactions were observed when three subcutaneous injections of the Leish-111f polyprotein formulated with either MPL-squalene (SE) or Ribi 529-SE were given to BALB/c mice. A predominant Th1 immune response characterized by in vitro lymphocyte proliferation, gamma interferon production, and immunoglobulin G2A antibodies was observed with little, if any, IL-4. Moreover, Leish-111f formulated with MPL-SE conferred immunity to leishmaniasis for at least 3 months. These data demonstrate success at designing and developing a prophylactic leishmaniasis vaccine that proved effective in a preclinical model using multiple leishmanial antigens produced as a single protein delivered with a powerful Th1 adjuvant suitable for human use.


Vaccine | 2009

Novel recombinant BCG expressing perfringolysin O and the over-expression of key immunodominant antigens; pre-clinical characterization, safety and protection against challenge with Mycobacterium tuberculosis

Ronggai Sun; Yasir A. W. Skeiky; Angelo Izzo; Veerabadran Dheenadhayalan; Zakaria Imam; Erica Penn; Katherine Stagliano; Scott Haddock; Stefanie Mueller; John Fulkerson; Charles A. Scanga; Ajay Grover; Steven C. Derrick; Sheldon L. Morris; David Michael Hone; Marcus A. Horwitz; Stefan H. E. Kaufmann; Jerald C. Sadoff

Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis (TB), has infected approximately two billion individuals worldwide with approximately 9.2 million new cases and 1.6 million deaths annually. Current efforts are focused on making better BCG priming vaccines designed to induce a comprehensive and balanced immunity followed by booster(s) targeting a specific set of relevant antigens in common with the BCG prime. We describe the generation and immunological characterization of recombinant BCG strains with properties associated with lysis of the endosome compartment and over-expression of key Mtb antigens. The endosome lysis strain, a derivative of BCG SSI-1331 (BCG(1331)) expresses a mutant form of perfringolysin O (PfoA(G137Q)), a cytolysin normally secreted by Clostridium perfringens. Integration of the PfoA(G137Q) gene into the BCG genome was accomplished using an allelic exchange plasmid to replace ureC with pfoA(G137Q) under the control of the Ag85B promoter. The resultant BCG construct, designated AERAS-401 (BCG(1331) DeltaureC::OmegapfoA(G137Q)) secreted biologically active Pfo, was well tolerated with a good safety profile in immunocompromised SCID mice. A second rBCG strain, designated AFRO-1, was generated by incorporating an expression plasmid encoding three mycobacterial antigens, Ag85A, Ag85B and TB10.4, into AERAS-401. Compared to the parental BCG strain, vaccination of mice and guinea pigs with AFRO-1 resulted in enhanced immune responses. Mice vaccinated with AFRO-1 and challenged with the hypervirulent Mtb strain HN878 also survived longer than mice vaccinated with the parental BCG. Thus, we have generated improved rBCG vaccine candidates that address many of the shortcomings of the currently licensed BCG vaccine strains.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Defined tuberculosis vaccine, Mtb72F/AS02A, evidence of protection in cynomolgus monkeys

Steven G. Reed; Rhea N. Coler; Wilfried Dalemans; Esterlina V. Tan; Eduardo C. Dela Cruz; Randall J. Basaraba; Ian M. Orme; Yasir A. W. Skeiky; Mark R. Alderson; Karen D. Cowgill; Jean-Paul Prieels; Rodolfo M. Abalos; Marie-Claude Dubois; Joe Cohen; Pascal Mettens; Yves Lobet

The development of a vaccine for tuberculosis requires a combination of antigens and adjuvants capable of inducing appropriate and long-lasting T cell immunity. We evaluated Mtb72F formulated in AS02A in the cynomolgus monkey model. The vaccine was immunogenic and caused no adverse reactions. When monkeys were immunized with bacillus Calmette–Guérin (BCG) and then boosted with Mtb72F in AS02A, protection superior to that afforded by using BCG alone was achieved, as measured by clinical parameters, pathology, and survival. We observed long-term survival and evidence of reversal of disease progression in monkeys immunized with the prime-boost regimen. Antigen-specific responses from protected monkeys receiving BCG and Mtb72F/AS02A had a distinctive cytokine profile characterized by an increased ratio between 3 Th1 cytokines, IFN-γ, TNF, and IL-2 and an innate cytokine, IL-6. To our knowledge, this is an initial report of a vaccine capable of inducing long-term protection against tuberculosis in a nonhuman primate model, as determined by protection against severe disease and death, and by other clinical and histopathological parameters.


Journal of Immunology | 2000

T Cell Expression Cloning of a Mycobacterium tuberculosis Gene Encoding a Protective Antigen Associated with the Early Control of Infection

Yasir A. W. Skeiky; Pamela J. Ovendale; Shyian Jen; Mark R. Alderson; Davin C. Dillon; Sherilyn Smith; Christopher B. Wilson; Ian M. Orme; Steven G. Reed; Antonio Campos-Neto

Infection of C57BL/6 mice with Mycobacterium tuberculosis results in the development of a progressive disease during the first 2 wk after challenge. Thereafter, the disease is controlled by the emergence of protective T cells. We have used this infection model in conjunction with direct T cell expression cloning to identify Ags involved with the early control of the disease. A protective M. tuberculosis-specific CD4 T cell line derived from mice at 3 wk postchallenge was used to directly screen an M. tuberculosis genomic expression library. This screen resulted in the identification of a genomic clone comprising two putative adjacent genes with predicted open reading frames of 10 and 41 kDa, MTB10 and MTB41, respectively (the products of Rv0916c and Rv0915c, respectively, in the TubercuList H37Rv database). MTB10 and MTB41 belong to the PE and PPE family of proteins recently identified to comprise 10% of the M. tuberculosis genome. Evaluation of the recombinant proteins revealed that MTB41, but not MTB10, is the Ag recognized by the cell line and by M. tuberculosis-sensitized human PBMC. Moreover, C57BL/6 mice immunized with MTB41 DNA developed both CD4- (predominantly Th1) and CD8-specific T cell responses to rMTB41 protein. More importantly, immunization of C57BL/6 mice with MTB41 DNA induced protection against infection with M. tuberculosis comparable to that induced by bacillus Calmette-Guérin. Thus, the use of a proven protective T cell line in conjunction with the T cell expression cloning approach resulted in the identification of a candidate Ag for a subunit vaccine against tuberculosis.

Collaboration


Dive into the Yasir A. W. Skeiky's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Thomas S. Vedvick

Infectious Disease Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ajay Bhatia

Infectious Disease Research Institute

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge