Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Adam Miles is active.

Publication


Featured researches published by Adam Miles.


PLOS ONE | 2014

High-Throughput Epitope Binning Assays on Label-Free Array-Based Biosensors Can Yield Exquisite Epitope Discrimination That Facilitates the Selection of Monoclonal Antibodies with Functional Activity

Yasmina Noubia Abdiche; Adam Miles; Josh Eckman; Davide Foletti; Thomas Van Blarcom; Yik Andy Yeung; Jaume Pons; Arvind Rajpal

Here, we demonstrate how array-based label-free biosensors can be applied to the multiplexed interaction analysis of large panels of analyte/ligand pairs, such as the epitope binning of monoclonal antibodies (mAbs). In this application, the larger the number of mAbs that are analyzed for cross-blocking in a pairwise and combinatorial manner against their specific antigen, the higher the probability of discriminating their epitopes. Since cross-blocking of two mAbs is necessary but not sufficient for them to bind an identical epitope, high-resolution epitope binning analysis determined by high-throughput experiments can enable the identification of mAbs with similar but unique epitopes. We demonstrate that a mAbs epitope and functional activity are correlated, thereby strengthening the relevance of epitope binning data to the discovery of therapeutic mAbs. We evaluated two state-of-the-art label-free biosensors that enable the parallel analysis of 96 unique analyte/ligand interactions and nearly ten thousand total interactions per unattended run. The IBIS-MX96 is a microarray-based surface plasmon resonance imager (SPRi) integrated with continuous flow microspotting technology whereas the Octet-HTX is equipped with disposable fiber optic sensors that use biolayer interferometry (BLI) detection. We compared their throughput, versatility, ease of sample preparation, and sample consumption in the context of epitope binning assays. We conclude that the main advantages of the SPRi technology are its exceptionally low sample consumption, facile sample preparation, and unparalleled unattended throughput. In contrast, the BLI technology is highly flexible because it allows for the simultaneous interaction analysis of 96 independent analyte/ligand pairs, ad hoc sensor replacement and on-line reloading of an analyte- or ligand-array. Thus, the complementary use of these two platforms can expedite applications that are relevant to the discovery of therapeutic mAbs, depending upon the sample availability, and the number and diversity of the interactions being studied.


Analytical Biochemistry | 2009

Detergent screening of a G-protein-coupled receptor using serial and array biosensor technologies.

Rebecca L. Rich; Adam Miles; Bruce K. Gale; David G. Myszka

We describe the benefits and limitations of two biosensor approaches for screening solubilization conditions for G-protein-coupled receptors (GPCRs). Assays designed for a serial processing instrument (Biacore 2000/3000/T100) and an array platform (Biacore Flexchip) were used to examine how effectively 96 different detergents solubilized the chemokine receptor CCR5 while maintaining its binding activity for a conformationally sensitive Fab (2D7). Using the serial processing instrument, we were able to analyze three samples in each 30-min binding cycle, thereby requiring approximately 24h to screen an entire 96-well plate of conditions. In-line capturing allowed us to normalize the 2D7 binding responses for different receptor capture levels. In contrast, with the array system, we could characterize the effects of all 96 detergents simultaneously, completing the assay in less than 1h. But the current array technology requires that we capture the GPCR preparations off-line, making it more challenging to normalize for receptor capture levels. Also, the array platform is less sensitive than the serial platforms, thereby limiting the size of the analyte to larger molecules (>5000Da). Overall, the two approaches proved to be highly complementary; both assays identified identical detergents that produced active solubilized CCR5 as well as those detergents that either were ineffective solubilizers or inactivated the receptor.


Analytical Chemistry | 2009

In situ microarray fabrication and analysis using a microfluidic flow cell array integrated with surface plasmon resonance microscopy

Jianping Liu; Mark Eddings; Adam Miles; Rostislav Bukasov; Bruce K. Gale; Jennifer S. Shumaker-Parry

Surface Plasmon Resonance Microscopy (SPRM) is a promising label-free analytical tool for the real-time study of biomolecule interactions in a microarray format. However, flow cell design and microarray fabrication have hindered throughput and limited applications of SPRM. Here we report the integration of a microfluidic flow cell array (MFCA) with SPRM enabling in situ microarray fabrication and multichannel analysis of biomolecule probe-target interactions. We demonstrate the use of the MFCA for delivery of sample solutions with continuous flow in 24 channels in parallel for rapid microarray creation and binding analysis while using SPRM for real-time monitoring of these processes. Label-free measurement of antibody-antibody interactions demonstrates the capabilities of the integrated MFCA-SPRM system and establishes the first steps of the development of a high-throughput, label-free immunogenicity assay. After in situ probe antibody immobilization, target antibody binding was monitored in real time in 24 channels simultaneously. The limit of detection for this particular antibody pair is 80 ng/mL which is approximately 6 times lower than the industry recommended immunogenicity assay detection limit. The integrated MFCA-SPRM system is a powerful and versatile combination for a range of array-based analyses, including biomarker screening and drug discovery.


mAbs | 2016

Assessing kinetic and epitopic diversity across orthogonal monoclonal antibody generation platforms

Yasmina Noubia Abdiche; Rian Harriman; Xiaodi Deng; Yik Andy Yeung; Adam Miles; Winse Morishige; Leila Marie Boustany; Lei Zhu; Shelley Izquierdo; William D. Harriman

ABSTRACT The ability of monoclonal antibodies (mAbs) to target specific antigens with high precision has led to an increasing demand to generate them for therapeutic use in many disease areas. Historically, the discovery of therapeutic mAbs has relied upon the immunization of mammals and various in vitro display technologies. While the routine immunization of rodents yields clones that are stable in serum and have been selected against vast arrays of endogenous, non-target self-antigens, it is often difficult to obtain species cross-reactive mAbs owing to the generally high sequence similarity shared across human antigens and their mammalian orthologs. In vitro display technologies bypass this limitation, but lack an in vivo screening mechanism, and thus may potentially generate mAbs with undesirable binding specificity and stability issues. Chicken immunization is emerging as an attractive mAb discovery method because it combines the benefits of both in vivo and in vitro display methods. Since chickens are phylogenetically separated from mammals, their proteins share less sequence homology with those of humans, so human proteins are often immunogenic and can readily elicit rodent cross-reactive clones, which are necessary for in vivo proof of mechanism studies. Here, we compare the binding characteristics of mAbs isolated from chicken immunization, mouse immunization, and phage display of human antibody libraries. Our results show that chicken-derived mAbs not only recapitulate the kinetic diversity of mAbs sourced from other methods, but appear to offer an expanded repertoire of epitopes. Further, chicken-derived mAbs can bind their native serum antigen with very high affinity, highlighting their therapeutic potential.


Analytical Biochemistry | 2008

Improved continuous-flow print head for micro-array deposition

Mark Eddings; Adam Miles; Josh Eckman; Jungkyu Kim; Rebecca L. Rich; Bruce K. Gale; David G. Myszka

Limitations in depositing ligands using conventional micro-array pin spotting have hindered the application of surface plasmon resonance imaging (SPRi) technology. To address these challenges we introduce a modification to our continuous-flow micro-spotting technology that improves ligand deposition. Using Flexchip protein A/G and neutravidin capturing surfaces, we demonstrate that our new microfluidic spotter requires 1000 times less concentrated antibodies and biotinylated ligands than is required for pin spotting. By varying the deposition flow rate, we show that the design of our tip overlay flow cell is efficient at delivering sample to the substrate surface. Finally, contact time studies show that it is possible to capture antibodies and biotinylated ligands at concentrations of less than 0.1 ug/ml and 100 pM, respectively. These improvements in spotting technology will help to expand the applications of SPRi systems in areas such as antibody screening, carbohydrate arrays, and biomarker detection.


Drug Discovery Today | 2014

High-throughput epitope binning of therapeutic monoclonal antibodies: why you need to bin the fridge.

Benjamin D. Brooks; Adam Miles; Yasmina Noubia Abdiche

Analytical tools are evolving to meet the need for the higher-throughput characterization of therapeutic monoclonal antibodies. An antibodys epitope is arguably its most important property because it underpins its functional activity but, because epitope selection is innate, it remains an empirical process. Here, we focus on the emergence of label-free biosensors with throughput capabilities orders of magnitude higher than the previous state-of-the-art, which can facilitate large assays such as epitope binning so that they can be incorporated alongside functional activity screens, enabling the rapid identification of leads that exhibit unique and functional epitopes. In addition to streamlining the drug development process by saving time and cost, the information from epitope binning assays could provide the basis for intellectual property protection.


Small | 2010

Improved Biomolecule microarrays by Printing on Nanoporous Aluminum Oxide Using a Continuous-Flow Microspotter

Jungkyu Kim; Adam Miles; Bruce K. Gale

Biomolecules, including protein A, albumin, and immunoglobulin G, are spotted on top of a nanoporous substrate by using a continuous-flow microspotter (CFM) system, which normally produces spots 3 to 4 orders of magnitude more sensitive than conventional biomolecule printing methods. The spots are observed with a fluorescence scanner. By using the CFM to print spots on nanoporous substrates, an additional order of magnitude increase in signal is observed, which leads to high signal-to-background ratios, highly saturated spots, and a measurable signal at printing concentrations as low as 1.6 ng mL(-1). This technique produces highly concentrated biomolecular spots from dilute samples and significantly increases the sensitivity of sensing platforms.


PLOS ONE | 2017

Antibodies Targeting Closely Adjacent or Minimally Overlapping Epitopes Can Displace One Another.

Yasmina Noubia Abdiche; Andy Yik Yeung; Irene Ni; Donna Marie Stone; Adam Miles; Winse Morishige; Andrea Rossi; Pavel Strop

Here we describe how real-time label-free biosensors can be used to identify antibodies that compete for closely adjacent or minimally overlapping epitopes on their specific antigen via a mechanism of antibody displacement. By kinetically perturbing one another’s binding towards their antigen via the formation of a transient trimolecular complex, antibodies can displace one another in a fully reversible and dose-dependent manner. Displacements can be readily identified when epitope binning assays are performed in a classical sandwich assay format whereby a solution antibody (analyte) is tested for binding to its antigen that is first captured via an immobilized antibody (ligand) because an inverted sandwiching response is observed when an analyte displaces a ligand, signifying the antigen’s unusually rapid dissociation from its ligand. In addition to classifying antibodies within a panel in terms of their ability to block or sandwich pair with one another, displacement provides a hybrid mechanism of competition. Using high-throughput epitope binning studies we demonstrate that displacements can be observed on any target, if the antibody panel contains appropriate epitope diversity. Unidirectional displacements occurring between disparate-affinity antibodies can generate apparent asymmetries in a cross-blocking experiment, confounding their interpretation. However, examining competition across a wide enough concentration range will often reveal that these displacements are reversible. Displacement provides a gentle and efficient way of eluting antigen from an otherwise high affinity binding partner which can be leveraged in designing reagents or therapeutic antibodies with unique properties.


mAbs | 2017

IgG Fc variant cross-reactivity between human and rhesus macaque FcγRs

Austin W. Boesch; Adam Miles; Ying N. Chan; Nana Yaw Osei-Owusu; Margaret E. Ackerman

ABSTRACT Non-human primate (NHP) studies are often an essential component of antibody development efforts before human trials. Because the efficacy or toxicity of candidate antibodies may depend on their interactions with Fcγ receptors (FcγR) and their resulting ability to induce FcγR-mediated effector functions such as antibody-dependent cell-meditated cytotoxicity and phagocytosis (ADCP), the evaluation of human IgG variants with modulated affinity toward human FcγR is becoming more prevalent in both infectious disease and oncology studies in NHP. Reliable translation of these results necessitates analysis of the cross-reactivity of these human Fc variants with NHP FcγR. We report evaluation of the binding affinities of a panel of human IgG subclasses, Fc amino acid point mutants and Fc glycosylation variants against the common allotypes of human and rhesus macaque FcγR by applying a high-throughput array-based surface plasmon resonance platform. The resulting data indicate that amino acid variation present in rhesus FcγRs can result in disrupted, matched, or even increased affinity of IgG Fc variants compared with human FcγR orthologs. These observations emphasize the importance of evaluating species cross-reactivity and developing an understanding of the potential limitations or suitability of representative in vitro and in vivo models before human clinical studies when either efficacy or toxicity may be associated with FcγR engagement.


Journal of Visualized Experiments | 2014

The submerged printing of cells onto a modified surface using a continuous flow microspotter.

Sherry N. Davidoff; Adam Miles; Valentin Romanov; Bruce K. Gale; Josh Eckman; Benjamin D. Brooks

The printing of cells for microarray applications possesses significant challenges including the problem of maintaining physiologically relevant cell phenotype after printing, poor organization and distribution of desired cells, and the inability to deliver drugs and/or nutrients to targeted areas in the array. Our 3D microfluidic printing technology is uniquely capable of sealing and printing arrays of cells onto submerged surfaces in an automated and multiplexed manner. The design of the microfluidic cell array (MFCA) 3D fluidics enables the printhead tip to be lowered into a liquid-filled well or dish and compressed against a surface to form a seal. The soft silicone tip of the printhead behaves like a gasket and is able to form a reversible seal by applying pressure or backing away. Other cells printing technologies such as pin or ink-jet printers are unable to print in submerged applications. Submerged surface printing is essential to maintain phenotypes of cells and to monitor these cells on a surface without disturbing the material surface characteristics. By printing onto submerged surfaces, cell microarrays are produced that allow for drug screening and cytotoxicity assessment in a multitude of areas including cancer, diabetes, inflammation, infections, and cardiovascular disease.

Collaboration


Dive into the Adam Miles's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge