Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yasuhiro Kosuge is active.

Publication


Featured researches published by Yasuhiro Kosuge.


PLOS ONE | 2011

Deficient of a Clock Gene, Brain and Muscle Arnt-Like Protein-1 (BMAL1), Induces Dyslipidemia and Ectopic Fat Formation

Shigeki Shimba; Tomohiro Ogawa; Shunsuke Hitosugi; Yuya Ichihashi; Yuki Nakadaira; Munehiro Kobayashi; Masakatsu Tezuka; Yasuhiro Kosuge; Kumiko Ishige; Yoshihisa Ito; Kazuo Komiyama; Yuko Okamatsu-Ogura; Kazuhiro Kimura; Masayuki Saito

A link between circadian rhythm and metabolism has long been discussed. Circadian rhythm is controlled by positive and negative transcriptional and translational feedback loops composed of several clock genes. Among clock genes, the brain and muscle Arnt-like protein-1 (BMAL1) and circadian locomotor output cycles kaput (CLOCK) play important roles in the regulation of the positive rhythmic transcription. In addition to control of circadian rhythm, we have previously shown that BMAL1 regulates adipogenesis. In metabolic syndrome patients, the function of BMAL1 is dysregulated in visceral adipose tissue. In addition, analysis of SNPs has revealed that BMAL1 is associated with susceptibility to hypertension and type II diabetes. Furthermore, the significant roles of BMAL1 in pancreatic β cells proliferation and maturation were recently reported. These results suggest that BMAL1 regulates energy homeostasis. Therefore, in this study, we examined whether loss of BMAL1 function is capable of inducing metabolic syndrome. Deficient of the Bmal1 gene in mice resulted in elevation of the respiratory quotient value, indicating that BMAL1 is involved in the utilization of fat as an energy source. Indeed, lack of Bmal1 reduced the capacity of fat storage in adipose tissue, resulting in an increase in the levels of circulating fatty acids, including triglycerides, free fatty acids, and cholesterol. Elevation of the circulating fatty acids level induced the formation of ectopic fat in the liver and skeletal muscle in Bmal1 -/- mice. Interestingly, ectopic fat formation was not observed in tissue-specific (liver or skeletal muscle) Bmal1 -/- mice even under high fat diet feeding condition. Therefore, we were led to conclude that BMAL1 is a crucial factor in the regulation of energy homeostasis, and disorders of the functions of BMAL1 lead to the development of metabolic syndrome.


Neuroscience | 2003

S-allyl-l-cysteine selectively protects cultured rat hippocampal neurons from amyloid β-protein- and tunicamycin-induced neuronal death

Yasuhiro Kosuge; Y Koen; Kumiko Ishige; K Minami; H Urasawa; Hiroaki Saito; Yoshihisa Ito

S-allyl-L-cysteine (SAC), one of the organosulfur compounds found in aged garlic extract, has been shown to possess various biological effects including neurotrophic activity. In our previous experiments, we found that SAC could protect against amyloid beta-protein (Abeta)- and tunicamycin-induced cell death in differentiated PC12 cells. In the study described here, we characterized the neuronal death induced by Abeta, 4-hydroxynonenal (HNE), tunicamycin, and trophic factor deprivation, and investigated whether and how SAC could prevent this in cultured rat hippocampal neurons. Treatment with SAC protected these cells against Abeta- and tunicamycin-induced neuronal death, which is mediated predominantly through caspase-12-dependent pathway in a concentration-dependent manner. In contrast, it afforded no protection against HNE- and trophic factor-deprivation-induced cell death, which has been shown to be mediated by caspase-3-dependent pathway. SAC also attenuated the Abeta-induced increase of intracellular reactive oxygen species in hippocampal neurons. SAC had no effect on Abeta-induced cell death in cultured cerebellar granule neurons, which was prevented by a caspase-3 inhibitor. These results suggest that SAC could protect against the neuronal cell death that is triggered by ER dysfunction in the hippocampus, and that it has no effect on neuronal cell death that is dependent upon the caspase-3 mediated pathway.


Neurochemistry International | 2006

Comparative study of endoplasmic reticulum stress-induced neuronal death in rat cultured hippocampal and cerebellar granule neurons

Yasuhiro Kosuge; Taeko Sakikubo; Kumiko Ishige; Yoshihisa Ito

In this study, experiments were performed to characterize further the pathways responsible for neuronal death induced by endoplasmic reticulum (ER) stress in cultured hippocampal neurons (HPN) and cerebellar granule neurons (CGN) using tunicamycin (TM) and amyloid beta-peptide (Abeta). Exposure of HPN to Abeta or TM resulted in a time-dependent increase in the expression of 78-kDa glucose-regulated protein (GRP78) and caspase-12, an ER-resident caspase. In contrast, in CGN, although a drastic increase in the expression of GRP78 was found as was the case in HPN, no up-regulation of caspase-12 was detected. These results were consistent with immunohistochemical results that there were far lower number of caspase-12-positive cells in the cerebellum than in the cerebral cortex and hippocampus, and that caspase-12-positive cells were not identified in the external granule cell layer of the cerebellum of P7 rats. In CGN, a significant increase in the expression of C/EBP homologous protein (CHOP) protein was detected after exposure to Abeta or TM, whereas no such an increase in the protein expression was observed in HPN. In addition, S-allyl-L-cysteine (SAC), an organosulfur compound purified from aged garlic extract, protected neurons against TM-induced neurotoxicity in HPN but not in CGN, as in the case of Abeta-induced neurotoxicity. These results suggest that the pathway responsible for neuronal death induced by Abeta and TM in HPN differs from that in CGN, and that a caspase-12-dependent pathway is involved in HPN while a CHOP-dependent pathway is involved in CGN in ER stress-induced neuronal death.


Neuroscience Research | 2003

Protective effect of S-allyl-l-cysteine, a garlic compound, on amyloid β-protein-induced cell death in nerve growth factor-differentiated PC12 cells

Yoshihisa Ito; Yasuhiro Kosuge; Taeko Sakikubo; Kayo Horie; Natsue Ishikawa; Naoya Obokata; Eiko Yokoyama; Kumiko Yamashina; Machiko Yamamoto; Hiroshi Saito; Motoki Arakawa; Kumiko Ishige

Aged garlic extract (AGE) contains several neuroactive compounds, including S-allyl-L-cysteine (SAC) and allixin. We characterized cell death induced by amyloid beta-protein (Abeta), 4-hydroxynonenal (HNE), tunicamycin, an endoplasmic reticulum (ER) stressor, or trophic factor deprivation, and investigated whether and how SAC could prevent this in nerve growth factor (NGF)-differentiated PC12 cells, a model of neuronal cells. Exposure of the cells to amyloid beta-protein(1-40) (Abeta(1-40)) decreased the extent of [3-(4,5)-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium (MTT) reduction activity and loss of neuronal integrity, but these effects were not prevented by Ac-DEVD-CHO, a caspase-3 inhibitor. Simultaneously applied SAC protected the cells against Abeta-induced cell death in a concentration-dependent manner. It also protected them against tunicamycin-induced neuronal death. In contrast, it afforded no protection against cell death induced by HNE and trophic factor deprivation, which is mediated by a caspase-3-dependent pathway. These results suggest that SAC may selectively protect cell death induced by Abeta and tunicamycin, which may be triggered by ER dysfunction in NGF-differentiated PC12 cells.


Neurochemistry International | 2010

Characterization of neuronal and astroglial responses to ER stress in the hippocampal CA1 area in mice following transient forebrain ischemia

Nobuhiro Osada; Yasuhiro Kosuge; Kumiko Ishige; Yoshihisa Ito

Transient forebrain ischemia has been shown to cause neuronal injury in the CA1 area of the hippocampus in mice. In addition to neuronal injury, astrocytes in area CA1 undergo apoptosis under ischemic conditions. Although failure of impaired astrocytes to take up glutamate is thought to contribute to the pathogenesis of cerebral ischemia, the molecular mechanism underlying this phenomenon remains unexplored. In the present study, we investigated neuronal and astroglial responses to endoplasmic reticulum (ER) stress, which is an important sequela of transient forebrain ischemia in the hippocampus of mice. Cellular injury was observed in area CA1 of the hippocampus 72h after reperfusion, and ssDNA positivity was detectable in some glial cells as well as neurons in this area. An increase of 78-kDa glucose-regulated protein (GRP78), an indicator of ER stress, was detected in pyramidal neurons and astrocytes in this area after the insult. Immunohistochemical analysis showed that caspase-12 was increased in pyramidal neurons and astrocytes located in the extrapyramidal cell layer. Immunoreactivity for C/EBP homologous protein (CHOP) was increased significantly in pyramidal cells but not in astrocytes. These results suggest that astrocytes as well as pyramidal neurons in area CA1 undergo apoptosis through an ER stress-dependent mechanism after ischemia. Unlike the situation in neuronal apoptosis, CHOP does not play a role in the cell death of astrocytes.


Neuroscience Research | 2008

Distinct mechanism of cell death is responsible for tunicamycin-induced ER stress in SK-N-SH and SH-SY5Y cells

Tetsuro Oda; Yasuhiro Kosuge; Motoki Arakawa; Kumiko Ishige; Yoshihisa Ito

In order to elucidate underlying mechanism of cell death pathways in neuronal cells in humans, we studied responsible pathways involved in the endoplasmic reticulum (ER) stress-induced cell death in neuroblastoma cells, SK-N-SH and its neuroblast-type subclone SH-SY5Y cells. A time-dependent induction of ER chaperons, glucose regulated protein (GRP)78 and GRP94, was observed after treatment with tunicamycin (TM), and cell death was also induced concomitantly in both cells. Although the pro-caspase-12-like protein was defined in both cells, a decrease in the protein was observed in only SH-SY5Y cells after exposure to TM. In contrast, pro-caspase-4 was detected in only SK-N-SH cells, and the cleaved-form was induced by the treatment with TM. A caspase-4 inhibitor, Z-LEVD-FMK attenuated TM-induced cell death in SK-N-SH cells. Calpain- and caspase-3-mediated proteolysis of alpha II-spectrin was also increased after the treatment with TM in both cells. A calpain inhibitor, calpeptin, repressed TM-induced cell death in only SK-N-SH cells. GADD153/C/EBP homologous protein (CHOP) was significantly induced after exposure to TM in only SH-SY5Y cells and RNA interference to GADD153/CHOP repressed TM-induced cell death. These results demonstrate that induction of GADD153/CHOP plays a pivotal role in mechanism of ER stress-induced cell death in SH-SY5Y cells, on the other hand, cleavage of pro-caspase-4 by activation of calpain play a crucial role in SK-N-SH cells. It is also suggested that the relevance of caspase-4 to ER stress is cell-specific even between human-origin cell lines.


Neurochemistry International | 2009

Apolipoprotein E-deficient mice are more vulnerable to ER stress after transient forebrain ischemia.

Nobuhiro Osada; Yasuhiro Kosuge; Tetsuroh Kihara; Kumiko Ishige; Yoshihisa Ito

Apolipoprotein E-deficient (apoE(-/-)) mice have been shown to have increased vulnerability to neuronal damage induced by cerebral ischemia; however, the mechanism of this increased vulnerability remains unclear. In order to define the role of the apoE protein against ischemia-induced ER stress and cell death, experiments were performed to compare ER stress-associated chaperones and signal proteins in the hippocampus of apoE(-/-) mice to those of WT mice after being subjected to forebrain ischemia and reperfusion. Although neuronal loss in area CA1-CA3 of the hippocampus was observed 3 days after ischemia in both types of mice, the damage in apoE(-/-) mice was more severe. In apoE(-/-) mice, a more extensive increase in 78-kDa glucose-regulated protein (GRP78) was observed after the insult, whereas the level of GRP94 was not changed. The expression of both C/EBP homologous protein (CHOP) and caspase-12 was increased in the hippocampus in both WT and apoE(-/-) mice after ischemia. The increased levels of CHOP in apoE(-/-) mice were significantly higher than those in WT mice, whereas the levels of caspase-12 in the two were comparable. Furthermore, whereas the levels of c-Jun N-terminal kinase (JNK), p-JNK1 and p-JNK2 in WT mice were unchanged after ischemia, they were significantly increased in apoE(-/-) mice 24h and 48h after ischemia. These results suggest that increased vulnerability of the hippocampus to forebrain ischemia and reperfusion in apoE(-/-) mice is at least partly attributable to perturbed induction of an ER chaperone, GRP 94, and enhancement of the CHOP- and JNK-dependent apoptotic pathway in the hippocampus.


Neurochemistry International | 2008

Subregion-specific vulnerability to endoplasmic reticulum stress-induced neurotoxicity in rat hippocampal neurons.

Yasuhiro Kosuge; Toru Imai; Mitsuru Kawaguchi; Tetsuroh Kihara; Kumiko Ishige; Yoshihisa Ito

It is well known that in certain disease states, including ischemia and Alzheimers disease, neurodegeneration occurs in the hippocampus and that vulnerability to neuronal death is area dependent. The present study investigated the mechanism of area-dependent vulnerability to neuronal death under endoplasmic reticulum stress conditions induced by tunicamycin (TM), using rat organotypic hippocampal cultures (OHC) and hippocampal slices. Analysis of propidium iodide uptake showed that TM-induced neuronal death in a concentration-dependent manner (20-80 microg/mL) and that the rank order of vulnerability among hippocampal subregions was dentate gyrus (DG)>CA1>CA3. Results of immunohistochemistry using hippocampal slices also showed that procaspase-12-positive cells in area CA3 were significantly fewer than those in area CA1 and the DG. Moreover, procurement of neurons in areas CA1, CA3 and the DG by laser microdissection, followed by Western blot analysis, also revealed that the level of procaspase-12 in area CA3 was significantly lower than those in area CA1 and the DG. Pretreatment with z-ATAD-fmk, a cell-permeable caspase-12-selective inhibitor significantly attenuated the TM-induced increase of PI fluorescence in the CA1 and DG subregion but not in area CA3. These results suggest that TM elicits subregion-specific neuronal toxicity in OHC and that the vulnerability to TM-induced toxicity is at least partly dependent on the expression level of endogenous procaspase-12 in each area of the hippocampus.


Neuroscience | 2007

Amyloid β-protein potentiates tunicamycin-induced neuronal death in organotypic hippocampal slice cultures

Toru Imai; Yasuhiro Kosuge; Kumiko Ishige; Yoshihisa Ito

We have assessed amyloid beta protein (Abeta)-induced neurotoxicity, with and without added tunicamycin (TM), an inhibitor of N-glycosylation in the endoplasmic reticulum (ER), in rat organotypic hippocampal slice cultures (OHCs). In the rat OHCs cultured for 3 weeks, there was little neurotoxicity after treatment with Abeta(25-35) (25 microM) alone for 48 h. However, with TM alone, concentration-dependent neuronal death was observed at concentrations between 20 and 80 microg/mL. When amyloid-beta protein was combined with tunicamycin (Abeta+TM), cell death was more acute than with TM alone. Western blot analysis revealed that calpain activity and the active forms of caspase-12 and caspase-3 was increased after exposure to Abeta+TM as compared with exposure to TM alone. In contrast, the levels of glucose regulated protein (GRP)94, GRP78 and C/EBP homologous protein (CHOP) were not changed in the presence of Abeta. Abeta potentiation of TM neurotoxicity was reversibly blocked by S-allyl-L-cysteine (SAC), an organosulfur compound purified from aged garlic extract, and the L-type calcium channel blocker, nifedipine, in a restricted neuronal area of the OHCs. Simultaneously applied SAC also reversed the increases in calpain activity and the active forms of caspase-12 and caspase-3 by Abeta+TM with no change in the increased levels of GRP94, GRP78 and CHOP. These data indicate that Abeta facilitates the calpain-caspase-12-caspase-3 pathway, thus potentiating TM-induced neuronal death in the hippocampus.


Oral Diseases | 2009

siRNA‐mediated gene silencing in the salivary gland using in vivo microbubble‐enhanced sonoporation

Takayuki Sakai; Mitsuru Kawaguchi; Yasuhiro Kosuge

OBJECTIVES siRNA-induced gene silencing in the salivary gland using microbubble-enhanced sonoporation was used to develop an in vivo gene knockdown technique. METHODS siRNA targeting rat glyceraldehyde-3-phosphate dehydrogenas (GAPDH) was mixed with echo-enhanced microbubbles and reverse-injected into rat parotid glands using transdermal ultrasound. To compare direct and transdermal ultrasound efficiencies, an incision was made on the lateral neck to expose the parotid glands for direct application. The efficiency of gene suppression was determined using quantitative reverse transcription-polymerase chain reaction 24-72 h after siRNA delivery. Cytotoxicity was assessed using histological analysis. RESULTS Expression of rat GAPDH in the parotid glands was silenced 48 h after siRNA was delivered by ultrasound (frequency: 1 MHz; intensity: 2 W cm(-2); exposure time: 2 min). High-intensity ultrasound induced tissue damage and apoptotic change. Echo-enhanced microbubbles significantly improved siRNA-induced gene silencing by 10-50%. Compared with transdermal application, direct-exposure ultrasound was only slightly effective, and no significant difference in gene expression was observed. CONCLUSION The results indicate that microbubble-enhanced sonoporation can yield in vivo siRNA gene silencing in the rat parotid gland. This technique could be applied to provide gene knockdown organs for functional genomic analyses and to develop siRNA-based gene therapy.

Collaboration


Dive into the Yasuhiro Kosuge's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge