Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Shigeki Shimba is active.

Publication


Featured researches published by Shigeki Shimba.


PLOS ONE | 2011

Deficient of a Clock Gene, Brain and Muscle Arnt-Like Protein-1 (BMAL1), Induces Dyslipidemia and Ectopic Fat Formation

Shigeki Shimba; Tomohiro Ogawa; Shunsuke Hitosugi; Yuya Ichihashi; Yuki Nakadaira; Munehiro Kobayashi; Masakatsu Tezuka; Yasuhiro Kosuge; Kumiko Ishige; Yoshihisa Ito; Kazuo Komiyama; Yuko Okamatsu-Ogura; Kazuhiro Kimura; Masayuki Saito

A link between circadian rhythm and metabolism has long been discussed. Circadian rhythm is controlled by positive and negative transcriptional and translational feedback loops composed of several clock genes. Among clock genes, the brain and muscle Arnt-like protein-1 (BMAL1) and circadian locomotor output cycles kaput (CLOCK) play important roles in the regulation of the positive rhythmic transcription. In addition to control of circadian rhythm, we have previously shown that BMAL1 regulates adipogenesis. In metabolic syndrome patients, the function of BMAL1 is dysregulated in visceral adipose tissue. In addition, analysis of SNPs has revealed that BMAL1 is associated with susceptibility to hypertension and type II diabetes. Furthermore, the significant roles of BMAL1 in pancreatic β cells proliferation and maturation were recently reported. These results suggest that BMAL1 regulates energy homeostasis. Therefore, in this study, we examined whether loss of BMAL1 function is capable of inducing metabolic syndrome. Deficient of the Bmal1 gene in mice resulted in elevation of the respiratory quotient value, indicating that BMAL1 is involved in the utilization of fat as an energy source. Indeed, lack of Bmal1 reduced the capacity of fat storage in adipose tissue, resulting in an increase in the levels of circulating fatty acids, including triglycerides, free fatty acids, and cholesterol. Elevation of the circulating fatty acids level induced the formation of ectopic fat in the liver and skeletal muscle in Bmal1 -/- mice. Interestingly, ectopic fat formation was not observed in tissue-specific (liver or skeletal muscle) Bmal1 -/- mice even under high fat diet feeding condition. Therefore, we were led to conclude that BMAL1 is a crucial factor in the regulation of energy homeostasis, and disorders of the functions of BMAL1 lead to the development of metabolic syndrome.


Journal of Biological Chemistry | 2012

Clock Genes Influence Gene Expression in Growth Plate and Endochondral Ossification in Mice

Takeshi Takarada; Ayumi Kodama; Shogo Hotta; Michihiro Mieda; Shigeki Shimba; Eiichi Hinoi; Yukio Yoneda

Background: Clock genes are expressed in different peripheral organs. Results: Rhythmic expression was lost with Ihh in the growth plate from mice defective of BMAL1 with a small body size. Conclusion: Endochondral ossification is under the control by clock genes in chondrocytes. Significance: Peripheral clocks are a target for treating cartilaginous diseases relevant to abnormal postnatal chondrogenesis. We have previously shown transient promotion by parathyroid hormone of Period-1 (Per1) expression in cultured chondrocytes. Here we show the modulation by clock genes of chondrogenic differentiation through gene transactivation of the master regulator of chondrogenesis Indian hedgehog (IHH) in chondrocytes of the growth plate. Several clock genes were expressed with oscillatory rhythmicity in cultured chondrocytes and rib growth plate in mice, whereas chondrogenesis was markedly inhibited in stable transfectants of Per1 in chondrocytic ATDC5 cells and in rib growth plate chondrocytes from mice deficient of brain and muscle aryl hydrocarbon receptor nuclear translocator-like (BMAL1). Ihh promoter activity was regulated by different clock gene products, with clear circadian rhythmicity in expression profiles of Ihh in the growth plate. In BMAL1-null mice, a predominant decrease was seen in Ihh expression in the growth plate with a smaller body size than in wild-type mice. BMAL1 deficit led to disruption of the rhythmic expression profiles of both Per1 and Ihh in the growth plate. A clear rhythmicity was seen with Ihh expression in ATDC5 cells exposed to dexamethasone. In young mice defective of BMAL1 exclusively in chondrocytes, similar abnormalities were found in bone growth and Ihh expression. These results suggest that endochondral ossification is under the regulation of particular clock gene products expressed in chondrocytes during postnatal skeletogenesis through a mechanism relevant to the rhythmic Ihh expression.


Cell Reports | 2012

Rhythmic Nucleotide Synthesis in the Liver: Temporal Segregation of Metabolites

Jean-Michel Fustin; Masao Doi; Hiroyuki Yamada; Rie Komatsu; Shigeki Shimba; Hitoshi Okamura

The synthesis of nucleotides in the body is centrally controlled by the liver, via salvage or de novo synthesis. We reveal a pervasive circadian influence on hepatic nucleotide metabolism, from rhythmic gene expression of rate-limiting enzymes to oscillating nucleotide metabolome in wild-type (WT) mice. Genetic disruption of the hepatic clock leads to aberrant expression of these enzymes, together with anomalous nucleotide rhythms, such as constant low levels of ATP with an excess in uric acid, the degradation product of purines. These results clearly demonstrate that the hepatic circadian clock orchestrates nucleotide synthesis and degradation. This circadian metabolome timetable, obtained using state-of-the-art capillary electrophoresis time-of-flight mass spectrometry, will guide further investigations in nucleotide metabolism-related disorders.


Molecular and Cellular Biology | 2014

CLOCK-Controlled Polyphonic Regulation of Circadian Rhythms through Canonical and Noncanonical E-Boxes

Hikari Yoshitane; Haruka Ozaki; Hideki Terajima; Ngoc-Hien Du; Yutaka Suzuki; Taihei Fujimori; Naoki Kosaka; Shigeki Shimba; Sumio Sugano; Toshihisa Takagi; Wataru Iwasaki; Yoshitaka Fukada

ABSTRACT In mammalian circadian clockwork, the CLOCK-BMAL1 complex binds to DNA enhancers of target genes and drives circadian oscillation of transcription. Here we identified 7,978 CLOCK-binding sites in mouse liver by chromatin immunoprecipitation-sequencing (ChIP-Seq), and a newly developed bioinformatics method, motif centrality analysis of ChIP-Seq (MOCCS), revealed a genome-wide distribution of previously unappreciated noncanonical E-boxes targeted by CLOCK. In vitro promoter assays showed that CACGNG, CACGTT, and CATG(T/C)G are functional CLOCK-binding motifs. Furthermore, we extensively revealed rhythmically expressed genes by poly(A)-tailed RNA-Seq and identified 1,629 CLOCK target genes within 11,926 genes expressed in the liver. Our analysis also revealed rhythmically expressed genes that have no apparent CLOCK-binding site, indicating the importance of indirect transcriptional and posttranscriptional regulations. Indirect transcriptional regulation is represented by rhythmic expression of CLOCK-regulated transcription factors, such as Krüppel-like factors (KLFs). Indirect posttranscriptional regulation involves rhythmic microRNAs that were identified by small-RNA-Seq. Collectively, CLOCK-dependent direct transactivation through multiple E-boxes and indirect regulations polyphonically orchestrate dynamic circadian outputs.


Pharmacology & Therapeutics | 1992

Methylated cap structures in eukaryotic RNAs: Structure, synthesis and functions

Ram Reddy; Ravinder Singh; Shigeki Shimba

There are more than twenty capped small nuclear RNAs characterized in eukaryotic cells. All the capped RNAs appear to be involved in the processing of other nuclear premessenger or preribosomal RNAs. These RNAs contain either trimethylguanosine (TMG) cap structure or methylated gamma phosphate (Mppp) cap structure. The TMG capped RNAs are capped with M7G during transcription by RNA polymerase II and trimethylated further post-transcriptionally. The Mppp-capped RNAs are transcribed by RNA polymerase III and also capped post-transcriptionally. The cap structures improve the stability of the RNAs and in some cases TMG cap is required for transport of the ribonucleoproteins from cytoplasm to the nucleus. Where tested, the cap structures were not essential for their function in processing other RNAs.


Journal of Biological Chemistry | 2014

Sympathetic activation induces skeletal Fgf23 expression in a circadian rhythm dependent manner

Masanobu Kawai; Saori Kinoshita; Shigeki Shimba; Keiichi Ozono; Toshimi Michigami

Background: The mechanism whereby the circadian clock regulates phosphate metabolism remains elusive. Results: Fgf23 expression is regulated by the time of food intake which involves the alteration in circadian profile of sympathetic activity. Conclusion: The circadian network plays important roles in phosphate metabolism. Significance: The sympathetic regulation of Fgf23 expression may shed light on new regulatory networks that could be important for phosphate homeostasis. The circadian clock network is well known to link food intake and metabolic outputs. Phosphorus is a pivotal nutritional factor involved in energy and skeletal metabolisms and possesses a circadian profile in the circulation; however, the precise mechanisms whereby phosphate metabolism is regulated by the circadian clock network remain largely unknown. Because sympathetic tone, which displays a circadian profile, is activated by food intake, we tested the hypothesis that phosphate metabolism was regulated by the circadian clock network through the modification of food intake-associated sympathetic activation. Skeletal Fgf23 expression showed higher expression during the dark phase (DP) associated with elevated circulating FGF23 levels and enhanced phosphate excretion in the urine. The peaks in skeletal Fgf23 expression and urine epinephrine levels, a marker for sympathetic tone, shifted from DP to the light phase (LP) when mice were fed during LP. Interestingly, β-adrenergic agonist, isoproterenol (ISO), induced skeletal Fgf23 expression when administered at ZT12, but this was not observed in Bmal1-deficient mice. In vitro reporter assays revealed that ISO trans-activated Fgf23 promoter through a cAMP responsive element in osteoblastic UMR-106 cells. The mechanism of circadian regulation of Fgf23 induction by ISO in vivo was partly explained by the suppressive effect of Cryptochrome1 (Cry1) on ISO signaling. These results indicate that the regulation of skeletal Fgf23 expression by sympathetic activity is dependent on the circadian clock system and may shed light on new regulatory networks of FGF23 that could be important for understanding the physiology of phosphate metabolism.


Molecular Biology Reports | 1996

Structural and functional similarities between MRP and RNase P

Ram Reddy; Shigeki Shimba

RNase P, the enzyme responsible for 5′-end processing of tRNAs and 4.5S RNA, has been extensively characterized fromE. coli. The RNA component ofE. coli RNase P, without the protein, has the enzymatic activity and is the first true RNA enzyme to be characterized. RNase P and MRP are two distinct nuclear ribonucleoprotein (RNP) particles characterized in many eukaryotic cells including human, yeast and plant cells. There are many similarities between RNase P and MRP. These include: (1) sequence specific endonuclease activity; (2) homology at the primary and secondary structure levels; and (3) common proteins in both the RNPs. It is likely that RNase P and MRP originated from a common ancestor.


Archives of Medical Science | 2011

Obesity alters the expression profile of clock genes in peripheral blood mononuclear cells

Kazunobu Tahira; Takahiro Ueno; Noboru Fukuda; Takahiko Aoyama; Akiko Tsunemi; Siroh Matsumoto; Chinami Nagura; Taro Matsumoto; Masayoshi Soma; Shigeki Shimba; Yoshiaki Matsumoto

Introduction The aim of this study was to investigate the association between the variation in expression profile of clock genes and obesity using peripheral blood mononuclear (PMN) cells. Material and methods The subjects comprised 10 obese patients and 10 healthy volunteers. Blood was collected at different time-points during the day and levels of blood sugar, IRI, adiponectin and leptin were determined. Peripheral blood mononuclear cells were sampled, and expression levels of brain and muscle Arnt-like protein-1 (BMAL1), Period (PER)1, PER2, Cryptochrome (CRY)1, CRY2, and REV-ERBα mRNA were quantified. Results During the day, the expression levels of BMAL1, CRY1, CRY2 and PER2 genes in PMN cells of the obese group were all significantly higher compared to those in the non-obese group. In addition, expression of BMAL1, CRY1, CRY2 and PER2 genes in PMN cells increased between 12:00 and 21:00 in the obese group. In PMN cells of both groups, PER1 gene expression showed a bimodal pattern, with high expression at 9:00 and 18:00. Conclusions Differences were observed in the expression profile variation of clock genes between the obese and non-obese groups. This study reveals the differences in clock gene expression profiles between obese and non-obese subjects, with evidence for two distinct chronotypes, and suggests a contribution of these chronotypes to fat accumulation in humans.


Biochimica et Biophysica Acta | 1998

Isolation and characterization of a new 110 kDa human nuclear RNA-binding protein (p110nrb)

Jian Gu; Shigeki Shimba; Nobuo Nomura; Ram Reddy

RNA-protein interactions play key roles in many fundamental cellular processes such as RNA processing, RNA transport, and RNA translation. During our attempts to isolate the human U6 small nuclear RNA capping enzyme, we identified a new 110 kDa nuclear RNA-binding protein, designated p110nrb. The full-length cDNA clone for p110nrb was characterized, and it encodes a 963 amino acid polypeptide. It is a highly acidic protein (pI 5.28) and the carboxyl terminal portion contains two conserved RNP motifs. A databank search found a putative C. elegans protein that might be the p110nrb homologue. The p110nrb was overexpressed as a glutathione S-transferase fusion protein in insect Sf9 cells, purified by affinity chromatography and injected into rabbits to produce specific polyclonal antibodies. Immunofluorescent staining showed that p110nrb is distributed evenly throughout the nucleoplasm. Northern blots showed that the mRNA is expressed in all tissues examined. An in vitro RNA-binding assay showed that p110nrb bound to RNA. These data suggest that p110nrb may play a role in the metabolism of nuclear RNA.


Nature Genetics | 2017

ADARB1 catalyzes circadian A-to-I editing and regulates RNA rhythm

Hideki Terajima; Hikari Yoshitane; Haruka Ozaki; Yutaka Suzuki; Shigeki Shimba; Shinya Kuroda; Wataru Iwasaki; Yoshitaka Fukada

It has been proposed that the CLOCK–ARNTL (BMAL1) complex drives circadian transcription of thousands of genes, including Per and Cry family genes that encode suppressors of CLOCK–ARNTL-dependent transcription. However, recent studies demonstrated that 70–80% of circadian-oscillating mRNAs have no obvious rhythms in their de novo transcription, indicating the potential importance of post-transcriptional regulation. Our CLOCK-ChIP-seq analysis identified rhythmic expression of adenosine deaminase, RNA-specific, B1 (Adarb1, also known as Adar2), an adenosine-to-inosine (A-to-I) RNA-editing enzyme. RNA-seq showed circadian rhythms of ADARB1-mediated A-to-I editing in a variety of transcripts. In Adarb1-knockout mice, rhythms of large populations of mRNA were attenuated, indicating a profound impact of ADARB1-mediated A-to-I editing on RNA rhythms. Furthermore, Adarb1-knockout mice exhibited short-period rhythms in locomotor activity and gene expression. These phenotypes were associated with abnormal accumulation of CRY2. The present study identifies A-to-I RNA editing as a key mechanism of post-transcriptional regulation in the circadian clockwork.

Collaboration


Dive into the Shigeki Shimba's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Taira Wada

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar

Keiko Unno

University of Shizuoka

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Shoji Okada

University of Shizuoka

View shared research outputs
Top Co-Authors

Avatar

Ram Reddy

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge