Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yasuko Hatta is active.

Publication


Featured researches published by Yasuko Hatta.


Nature | 2009

In vitro and in vivo characterization of new swine-origin H1N1 influenza viruses

Yasushi Itoh; Kyoko Shinya; Maki Kiso; Tokiko Watanabe; Yoshihiro Sakoda; Masato Hatta; Yukiko Muramoto; Daisuke Tamura; Yuko Sakai-Tagawa; Takeshi Noda; Saori Sakabe; Masaki Imai; Yasuko Hatta; Shinji Watanabe; Chengjun Li; S. Yamada; Ken Fujii; Shin Murakami; Hirotaka Imai; Satoshi Kakugawa; Mutsumi Ito; Ryo Takano; Kiyoko Iwatsuki-Horimoto; Masayuki Shimojima; Taisuke Horimoto; Hideo Goto; Kei Takahashi; Akiko Makino; Hirohito Ishigaki; Misako Nakayama

Influenza A viruses cause recurrent outbreaks at local or global scale with potentially severe consequences for human health and the global economy. Recently, a new strain of influenza A virus was detected that causes disease in and transmits among humans, probably owing to little or no pre-existing immunity to the new strain. On 11 June 2009 the World Health Organization declared that the infections caused by the new strain had reached pandemic proportion. Characterized as an influenza A virus of the H1N1 subtype, the genomic segments of the new strain were most closely related to swine viruses. Most human infections with swine-origin H1N1 influenza viruses (S-OIVs) seem to be mild; however, a substantial number of hospitalized individuals do not have underlying health issues, attesting to the pathogenic potential of S-OIVs. To achieve a better assessment of the risk posed by the new virus, we characterized one of the first US S-OIV isolates, A/California/04/09 (H1N1; hereafter referred to as CA04), as well as several other S-OIV isolates, in vitro and in vivo. In mice and ferrets, CA04 and other S-OIV isolates tested replicate more efficiently than a currently circulating human H1N1 virus. In addition, CA04 replicates efficiently in non-human primates, causes more severe pathological lesions in the lungs of infected mice, ferrets and non-human primates than a currently circulating human H1N1 virus, and transmits among ferrets. In specific-pathogen-free miniature pigs, CA04 replicates without clinical symptoms. The assessment of human sera from different age groups suggests that infection with human H1N1 viruses antigenically closely related to viruses circulating in 1918 confers neutralizing antibody activity to CA04. Finally, we show that CA04 is sensitive to approved and experimental antiviral drugs, suggesting that these compounds could function as a first line of defence against the recently declared S-OIV pandemic.


Nature | 2007

Aberrant innate immune response in lethal infection of macaques with the 1918 influenza virus

Darwyn Kobasa; Steven M. Jones; Kyoko Shinya; John C. Kash; John Copps; Hideki Ebihara; Yasuko Hatta; Jin Hyun Kim; Peter Halfmann; Masato Hatta; Friederike Feldmann; Judie B. Alimonti; Lisa Fernando; Yan Li; Michael G. Katze; Heinz Feldmann; Yoshihiro Kawaoka

The 1918 influenza pandemic was unusually severe, resulting in about 50 million deaths worldwide. The 1918 virus is also highly pathogenic in mice, and studies have identified a multigenic origin of this virulent phenotype in mice. However, these initial characterizations of the 1918 virus did not address the question of its pathogenic potential in primates. Here we demonstrate that the 1918 virus caused a highly pathogenic respiratory infection in a cynomolgus macaque model that culminated in acute respiratory distress and a fatal outcome. Furthermore, infected animals mounted an immune response, characterized by dysregulation of the antiviral response, that was insufficient for protection, indicating that atypical host innate immune responses may contribute to lethality. The ability of influenza viruses to modulate host immune responses, such as that demonstrated for the avian H5N1 influenza viruses, may be a feature shared by the virulent influenza viruses.


PLOS Pathogens | 2007

Growth of H5N1 Influenza A Viruses in the Upper Respiratory Tracts of Mice

Masato Hatta; Yasuko Hatta; Jin Hyun Kim; Shinji Watanabe; Kyoko Shinya; Tung Thanh Nguyen; Phuong Song Lien; Quynh Mai Le; Yoshihiro Kawaoka

Highly pathogenic avian H5N1 influenza A viruses have spread throughout Asia, Europe, and Africa, raising serious worldwide concern about their pandemic potential. Although more than 250 people have been infected with these viruses, with a consequent high rate of mortality, the molecular mechanisms responsible for the efficient transmission of H5N1 viruses among humans remain elusive. We used a mouse model to examine the role of the amino acid at position 627 of the PB2 viral protein in efficient replication of H5N1 viruses in the mammalian respiratory tract. Viruses possessing Lys at position 627 of PB2 replicated efficiently in lungs and nasal turbinates, as well as in cells, even at the lower temperature of 33 °C. Those viruses possessing Glu at this position replicated less well in nasal turbinates than in lungs, and less well in cells at the lower temperature. These results suggest that Lys at PB2–627 confers to avian H5N1 viruses the advantage of efficient growth in the upper and lower respiratory tracts of mammals. Therefore, efficient viral growth in the upper respiratory tract may provide a platform for the adaptation of avian H5N1 influenza viruses to humans and for efficient person-to-person virus transmission, in the context of changes in other viral properties including specificity for human (sialic acid α-2,6-galactose containing) receptors.


Proceedings of the National Academy of Sciences of the United States of America | 2009

A critical role for the sphingosine analog AAL-R in dampening the cytokine response during influenza virus infection

David Marsolais; Bumsuk Hahm; Kevin B. Walsh; Kurt H. Edelmann; Dorian B. McGavern; Yasuko Hatta; Yoshihiro Kawaoka; Hugh Rosen; Michael B. A. Oldstone

Pulmonary tissue damage resulting from influenza virus infection is caused by both the cytolytic activity of the virus and the host immune response. Immune-mediated injury results from T cell-mediated destruction of virus-infected cells and by release of cytokines and chemokines that attract polymorphonuclear leukocytes (PML) and macrophages to the infected site. The cytokines/chemokines potentiate dendritic cell (DC) activation and T cell expansion, which further enhances local damage. Here we report that immune modulation by local administration to the respiratory tract of sphingosine analog AAL-R significantly dampens the release of cytokines and chemokines while maintaining protective neutralizing antibody and cytotoxic T cell responses. As a result there was a marked reduction of infiltrating PML and macrophages into the lung and resultant pulmonary tissue injury. DC maturation was suppressed, which limited proliferation of specific antiviral T cells in the lung and draining lymph nodes. Further, AAL-R was effective in controlling CD8+ T cell accumulation in the lungs even when given 4 days after initiation of influenza virus infection. These data indicate that sphingosine analogs display useful potential for controlling the immunopathology caused by influenza virus.


Molecular Pharmacology | 2008

Local not systemic modulation of dendritic cell S1P receptors in lung blunts virus-specific immune responses to influenza

David Marsolais; Bumsuk Hahm; Kurt H. Edelmann; Kevin B. Walsh; Miguel Guerrero; Yasuko Hatta; Yoshihiro Kawaoka; Edward Roberts; Michael B. A. Oldstone; Hugh Rosen

The mechanism by which locally delivered sphingosine analogs regulate host response to localized viral infection has never been addressed. In this report, we show that intratracheal delivery of the chiral sphingosine analog (R)-2-amino-4-(4-heptyloxyphenyl)-2-methylbutanol (AAL-R) or its phosphate ester inhibits the T-cell response to influenza virus infection. In contrast, neither intraperitoneal delivery of AAL-R nor intratracheal instillation of the non-phosphorylatable stereoisomer AAL-S suppressed virus-specific T-cell response, indicating that in vivo phosphorylation of AAL-R and sphingosine 1-phosphate (S1P) receptor modulation in lungs is essential for immunomodulation. Intratracheal delivery of water-soluble S1P1 receptor agonist at doses sufficient to induce systemic lymphopenia did not inhibit virus-specific T-cell response, indicating that S1P1 is not involved in the immunosuppressive activities of AAL-R and that immunosuppression acts independently of naive lymphocyte recirculation. Accumulation of dendritic cells (DCs) in draining lymph nodes was inhibited by intratracheal but not intraperitoneal delivery of AAL-R. Direct modulation of DCs is demonstrated by the impaired ability of virus-infected bone marrow-derived DCs treated in vitro with AAL-R to trigger in vivo T-cell response after adoptive transfer to the airways. Thus, our results suggest that locally delivered sphingosine analogs induce immunosuppression by modulating S1P receptors other than S1P1 or S1P2 on dendritic cells in the lungs after influenza virus infection.


Journal of Virology | 2009

Replication-Deficient Ebolavirus as a Vaccine Candidate

Peter Halfmann; Hideki Ebihara; Andrea Marzi; Yasuko Hatta; Shinji Watanabe; Mavanur R. Suresh; Gabriele Neumann; Heinz Feldmann; Yoshihiro Kawaoka

ABSTRACT Ebolavirus causes severe hemorrhagic fever, with case fatality rates as high as 90%. Currently, no licensed vaccine is available against Ebolavirus. We previously generated a replication-deficient, biologically contained Ebolavirus, EbolaΔVP30, which lacks the essential VP30 gene, grows only in cells stably expressing this gene product, and is genetically stable. Here, we evaluated the vaccine potential of EbolaΔVP30. First, we demonstrated its safety in STAT-1-knockout mice, a susceptible animal model for Ebolavirus infection. We then tested its protective efficacy in two animal models, mice and guinea pigs. Mice immunized twice with EbolaΔVP30 were protected from a lethal infection of mouse-adapted Ebolavirus. Virus titers in the serum of vaccinated mice were significantly lower than those in nonvaccinated mice. Protection of mice immunized with EbolaΔVP30 was associated with a high antibody response to the Ebolavirus glycoprotein and the generation of an Ebolavirus NP-specific CD8+ T-cell response. Guinea pigs immunized twice with EbolaΔVP30 were also protected from a lethal infection of guinea pig-adapted Ebolavirus. Our study demonstrates the potential of the EbolaΔVP30 virus as a new vaccine platform.


Journal of Virology | 2011

Host Regulatory Network Response to Infection with Highly Pathogenic H5N1 Avian Influenza Virus

Chengjun Li; Armand Bankhead; Amie J. Eisfeld; Yasuko Hatta; Sophia Jeng; Jean H. Chang; Lauri D. Aicher; Sean Proll; Amy L. Ellis; G. Lynn Law; Katrina M. Waters; Gabriele Neumann; Michael G. Katze; Shannon McWeeney; Yoshihiro Kawaoka

ABSTRACT During the last decade, more than half of humans infected with highly pathogenic avian influenza (HPAI) H5N1 viruses have died, yet virus-induced host signaling has yet to be clearly elucidated. Airway epithelia are known to produce inflammatory mediators that contribute to HPAI H5N1-mediated pathogenicity, but a comprehensive analysis of the host response in this cell type is lacking. Here, we leveraged a system approach to identify and statistically validate signaling subnetworks that define the dynamic transcriptional response of human bronchial epithelial cells after infection with influenza A/Vietnam/1203/2004 (H5N1, VN1203). Importantly, we validated a subset of transcripts from one subnetwork in both Calu-3 cells and mice. A more detailed examination of two subnetworks involved in the immune response and keratinization processes revealed potential novel mediators of HPAI H5N1 pathogenesis and host response signaling. Finally, we show how these results compare to those for a less virulent strain of influenza virus. Using emergent network properties, we provide fresh insight into the host response to HPAI H5N1 virus infection and identify novel avenues for perturbation studies and potential therapeutic interventions for fatal HPAI H5N1 disease.


Journal of Virology | 2011

Subclinical Brain Injury Caused by H5N1 Influenza Virus Infection

Kyoko Shinya; Akiko Makino; Masato Hatta; Shinji Watanabe; Jin Hyun Kim; Yasuko Hatta; Peng Gao; Makoto Ozawa; Quynh Mai Le; Yoshihiro Kawaoka

ABSTRACT Although H5N1 influenza A viruses can cause systemic infection, their neurotropism and long-term effects on the central nervous system (CNS) are not fully understood. We assessed H5N1viral invasion of the CNS and its long-term effects in a ferret model. An H5N1 virus caused nonsuppurative encephalitis, which lasted for 3 months without neurologic signs. Further, another H5N1 virus caused nonsuppurative vasculitis with brain hemorrhage. Three-dimensional analysis of viral distribution in the brain identified the olfactory system as a major route for brain invasion. The efficient growth of virus in the upper respiratory tract may thus facilitate viral brain invasion.


PLOS Pathogens | 2010

Viral Replication Rate Regulates Clinical Outcome and CD8 T Cell Responses during Highly Pathogenic H5N1 Influenza Virus Infection in Mice

Yasuko Hatta; Karen Hershberger; Kyoko Shinya; Sean Proll; Richard R. Dubielzig; Masato Hatta; Michael G. Katze; Yoshihiro Kawaoka; M. Suresh

Since the first recorded infection of humans with H5N1 viruses of avian origin in 1997, sporadic human infections continue to occur with a staggering mortality rate of >60%. Although sustained human-to-human transmission has not occurred yet, there is a growing concern that these H5N1 viruses might acquire this trait and raise the specter of a pandemic. Despite progress in deciphering viral determinants of pathogenicity, we still lack crucial information on virus/immune system interactions pertaining to severe disease and high mortality associated with human H5N1 influenza virus infections. Using two human isolates of H5N1 viruses that differ in their pathogenicity in mice, we have defined mechanistic links among the rate of viral replication, mortality, CD8 T cell responses, and immunopathology. The extreme pathogenicity of H5N1 viruses was directly linked to the ability of the virus to replicate rapidly, and swiftly attain high steady-state titers in the lungs within 48 hours after infection. The remarkably high replication rate of the highly pathogenic H5N1 virus did not prevent the induction of IFN-β or activation of CD8 T cells, but the CD8 T cell response was ineffective in controlling viral replication in the lungs and CD8 T cell deficiency did not affect viral titers or mortality. Additionally, BIM deficiency ameliorated lung pathology and inhibited T cell apoptosis without affecting survival of mice. Therefore, rapidly replicating, highly lethal H5N1 viruses could simply outpace and overwhelm the adaptive immune responses, and kill the host by direct cytopathic effects. However, therapeutic suppression of early viral replication and the associated enhancement of CD8 T cell responses improved the survival of mice following a lethal H5N1 infection. These findings suggest that suppression of early H5N1 virus replication is key to the programming of an effective host response, which has implications in treatment of this infection in humans.


Vaccine | 2011

An M2 cytoplasmic tail mutant as a live attenuated influenza vaccine against pandemic (H1N1) 2009 influenza virus

Yasuko Hatta; Masato Hatta; Pamuk Bilsel; Gabriele Neumann; Yoshihiro Kawaoka

The 2009 influenza pandemic brought home the importance of vaccines in infection control. Previously, we demonstrated an M2 cytoplasmic tail mutant H5N1 influenza virus could serve as a live-attenuated vaccine. Here, we adapted that strategy, generating a mutant pandemic (H1N1) 2009 virus that grew well in cell culture, but replicated less well in mice than did wild-type virus. The mutant virus elicited sterile immunity in mice, completely protecting them from challenge with a pandemic (H1N1) 2009 virus. Our results indicate that M2 cytoplasmic tail mutants are suitable for live-attenuated vaccines against pandemic viruses.

Collaboration


Dive into the Yasuko Hatta's collaboration.

Top Co-Authors

Avatar

Yoshihiro Kawaoka

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Masato Hatta

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Shinji Watanabe

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Gabriele Neumann

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jin Hyun Kim

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sally Sarawar

Torrey Pines Institute for Molecular Studies

View shared research outputs
Researchain Logo
Decentralizing Knowledge