Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yasunobu Uchijima is active.

Publication


Featured researches published by Yasunobu Uchijima.


American Journal of Physiology-renal Physiology | 2008

Multiple renal cysts, urinary concentration defects, and pulmonary emphysematous changes in mice lacking TAZ

Ryosuke Makita; Yasunobu Uchijima; Koichi Nishiyama; Tomokazu Amano; Qin Chen; Takumi Takeuchi; Akihisa Mitani; Takahide Nagase; Yutaka Yatomi; Hiroyuki Aburatani; Osamu Nakagawa; Erin V. Small; Patricia Cobo-Stark; Peter Igarashi; Masao Murakami; Junji Tominaga; Takahiro Sato; Tomoichiro Asano; Yukiko Kurihara; Hiroki Kurihara

TAZ (transcriptional coactivator with PDZ-binding motif), also called WWTR1 (WW domain containing transcription regulator 1), is a 14-3-3-binding molecule homologous to Yes-associated protein. TAZ acts as a coactivator for several transcription factors as well as a modulator of membrane-associated PDZ domain-containing proteins, but its (patho)physiological roles remain unknown. Here we show that gene inactivation of TAZ in mice resulted in pathological changes in the kidney and lung that resemble the common human diseases polycystic kidney disease and pulmonary emphysema. Taz-null/lacZ knockin mutant homozygotes demonstrated renal cyst formation as early as embryonic day 15.5 with dilatation of Bowmans capsules and proximal tubules, followed by pelvic dilatation and hydronephrosis. After birth, only one-fifth of TAZ-deficient homozygotes grew to adulthood and demonstrated multicystic kidneys with severe urinary concentrating defects and polyuria. Furthermore, adult TAZ-deficient homozygotes exhibited diffuse emphysematous changes in the lung. Thus TAZ is essential for developmental mechanisms involved in kidney and lung organogenesis, whose disturbance may lead to the pathogenesis of common human diseases.


Journal of Biological Chemistry | 2008

AMP-activated Protein Kinase Activation Increases Phosphorylation of Glycogen Synthase Kinase 3β and Thereby Reduces cAMP-responsive Element Transcriptional Activity and Phosphoenolpyruvate Carboxykinase C Gene Expression in the Liver

Nanao Horike; Hideyuki Sakoda; Akifumi Kushiyama; Hiraku Ono; Midori Fujishiro; Hideaki Kamata; Koichi Nishiyama; Yasunobu Uchijima; Yukiko Kurihara; Hiroki Kurihara; Tomoichiro Asano

AMP-activated protein kinase (AMPK) activation reportedly suppresses transcriptional activity of the cAMP-responsive element (CRE) in the phosphoenolpyruvate carboxykinase C (PEPCK-C) promoter and reduces hepatic PEPCK-C expression. Although a previous study found TORC2 phosphorylation to be involved in the suppression of AMPK-mediated CRE transcriptional activity, we herein present evidence that glycogen synthase kinase 3β (GSK3β) phosphorylation induced by AMPK also plays an important role. We initially found that injecting fasted mice with 5-aminoimidazole-4-carboxamide ribonucleoside (AICAR) markedly increased Ser-9 phosphorylation of hepatic GSK3β within 15 min. Stimulation with AICAR or the GSK3β inhibitor SB-415286 strongly inhibited CRE-containing promoter activity in HepG2 cells. Using the Gal4-based transactivation assay system, the transcriptional activity of cAMP-response element-binding protein (CREB) was suppressed by both AICAR and SB415286, whereas that of TORC2 was repressed significantly by AICAR but very slightly by SB415286. These results show inactivation of GSK3β to directly inhibit CREB but not TORC2. Importantly, the AICAR-induced suppression of PEPCK-C expression was shown to be blunted by overexpression of GSK3β(S9G) but not wild-type GSK3β. In addition, AICAR stimulation decreased, whereas Compound C (AMPK inhibitor) increased CREB phosphorylation (Ser-129) in HepG2 cells. The time-courses of decreased CREB phosphorylation (Ser-129) and increased GSK3β phosphorylation were very similar. Furthermore, AMPK-mediated GSK3β phosphorylation was inhibited by an Akt-specific inhibitor in HepG2 cells, suggesting involvement of the Akt pathway. In summary, phosphorylation (Ser-9) of GSK3β is very likely to be critical for AMPK-mediated PEPCK-C gene suppression. Reduced CREB phosphorylation (Ser-129) associated with inactivation of GSK3β by Ser-9 phosphorylation may be the major mechanism underlying PEPCK-C gene suppression by AMPK-activating agents such as biguanide.


Proceedings of the National Academy of Sciences of the United States of America | 2008

An endothelin-1 switch specifies maxillomandibular identity

Takahiro Sato; Yukiko Kurihara; Rieko Asai; Yumiko Kawamura; Kazuo Tonami; Yasunobu Uchijima; Eglantine Heude; Marc Ekker; Giovanni Levi; Hiroki Kurihara

Articulated jaws are highly conserved structures characteristic of gnathostome evolution. Epithelial-mesenchymal interactions within the first pharyngeal arch (PA1) instruct cephalic neural crest cells (CNCCs) to form the different skeletal elements of the jaws. The endothelin-1 (Edn1)/endothelin receptor type-A (Ednra)→Dlx5/6→Hand2 signaling pathway is necessary for lower jaw formation. Here, we show that the Edn1 signaling is sufficient for the conversion of the maxillary arch to mandibular identity. Constitutive activation of Ednra induced the transformation of upper jaw, maxillary, structures into lower jaw, mandibular, structures with duplicated Meckels cartilage and dermatocranial jaws constituted by 4 dentary bones. Misexpression of Hand2 in the Ednra domain caused a similar transformation. Skeletal transformations are accompanied by neuromuscular remodeling. Ednra is expressed by most CNCCs, but its constitutive activation affects predominantly PA1. We conclude that after migration CNCCs are not all equivalent, suggesting that their specification occurs in sequential steps. Also, we show that, within PA1, CNCCs are competent to form both mandibular and maxillary structures and that an Edn1 switch is responsible for the choice of either morphogenetic program.


Development | 2011

Angiogenic morphogenesis driven by dynamic and heterogeneous collective endothelial cell movement

Satoshi Arima; Koichi Nishiyama; Toshiyuki Ko; Yuichiro Arima; Yuji Hakozaki; Kei Sugihara; Hiroaki Koseki; Yasunobu Uchijima; Yukiko Kurihara; Hiroki Kurihara

Angiogenesis is a complex process, which is accomplished by reiteration of modules such as sprouting, elongation and bifurcation, that configures branching vascular networks. However, details of the individual and collective behaviors of vascular endothelial cells (ECs) during angiogenic morphogenesis remain largely unknown. Herein, we established a time-lapse imaging and computer-assisted analysis system that quantitatively characterizes behaviors in sprouting angiogenesis. Surprisingly, ECs moved backwards and forwards, overtaking each other even at the tip, showing an unknown mode of collective cell movement with dynamic ‘cell-mixing’. Mosaic analysis, which enabled us to monitor the behavior of individual cells in a multicellular structure, confirmed the ‘cell-mixing’ phenomenon of ECs that occurs at the whole-cell level. Furthermore, an in vivo EC-tracking analysis revealed evidence of cell-mixing and overtaking at the tip in developing murine retinal vessels. In parametrical analysis, VEGF enhanced tip cell behavior and directed EC migration at the stalk during branch elongation. These movements were counter-regulated by EC-EC interplay via γ-secretase-dependent Dll4-Notch signaling, and might be promoted by EC-mural cell interplay. Finally, multiple regression analysis showed that these molecule-mediated tip cell behaviors and directed EC migration contributed to effective branch elongation. Taken together, our findings provide new insights into the individual and collective EC movements driving angiogenic morphogenesis. The methodology used for this analysis might serve to bridge the gap in our understanding between individual cell behavior and branching morphogenesis.


Journal of Clinical Investigation | 2010

Sirt3 protects in vitro–fertilized mouse preimplantation embryos against oxidative stress–induced p53-mediated developmental arrest

Yumiko Kawamura; Yasunobu Uchijima; Nanao Horike; Kazuo Tonami; Koichi Nishiyama; Tomokazu Amano; Tomoichiro Asano; Yukiko Kurihara; Hiroki Kurihara

Sirtuins are a phylogenetically conserved NAD+-dependent protein deacetylase/ADP-ribosyltransferase family implicated in diverse biological processes. Several family members localize to mitochondria, the function of which is thought to determine the developmental potential of preimplantation embryos. We have therefore characterized the role of sirtuins in mouse preimplantation development under in vitro culture conditions. All sirtuin members were expressed in eggs, and their expression gradually decreased until the blastocyst stage. Treatment with sirtuin inhibitors resulted in increased intracellular ROS levels and decreased blastocyst formation. These effects were recapitulated by siRNA-induced knockdown of Sirt3, which is involved in mitochondrial energy metabolism, and in Sirt3-/- embryos. The antioxidant N-acetyl-L-cysteine and low-oxygen conditions rescued these adverse effects. When Sirt3-knockdown embryos were transferred to pseudopregnant mice after long-term culture, implantation and fetal growth rates were decreased, indicating that Sirt3-knockdown embryos were sensitive to in vitro conditions and that the effect was long lasting. Further experiments revealed that maternally derived Sirt3 was critical. Sirt3 inactivation increased mitochondrial ROS production, leading to p53 upregulation and changes in downstream gene expression. The inactivation of p53 improved the developmental outcome of Sirt3-knockdown embryos, indicating that the ROS-p53 pathway was responsible for the developmental defects. These results indicate that Sirt3 plays a protective role in preimplantation embryos against stress conditions during in vitro fertilization and culture.


Current Medicinal Chemistry | 2004

Glucose Transporter and Na+ / glucose Cotransporter as Molecular Targets of Anti-Diabetic Drugs

Tomoichiro Asano; Takehide Ogihara; Hideki Katagiri; Hideyuki Sakoda; Hiraku Ono; Midori Fujishiro; Motonobu Anai; Hiroki Kurihara; Yasunobu Uchijima

Glucose transporters, or membrane proteins, which incorporate glucose into the cell, can be divided into two groups: the facilitative type glucose transporter (GLUT), and the sodium/glucose cotransporter (SGLT). Among the GLUT family isoforms, GLUT4 is particularly important for maintaining glucose metabolism homeostasis since it is involved in insulin or exercise-induced glucose transport into muscle and adipose tissues via movement from intracellular sites to the plasma membrane in response to stimulation. Thus, agents which induce GLUT4 translocation or improve insulin sensitivity, involved in this insulin-induced step, hold the promise of being potent anti-diabetic drugs. On the other hand, SGLT is expressed specifically in the intestines and kidneys. Oral administration of a SGLT inhibitor, T-1095, lowers the blood glucose concentration via excretion of glucose in the urine, due to suppression of renal SGLT function. In addition to this direct blood glucose lowering effect, T-1095 has been shown to restore impaired insulin secretion from pancreatic beta-cells, as well as to improve insulin resistance in muscle and liver. Thus, this SGLT inhibitor is regarded as a novel and promising agent for the treatment of diabetes mellitus.


Journal of Biological Chemistry | 2005

Resistin-like Molecule β Activates MAPKs, Suppresses Insulin Signaling in Hepatocytes, and Induces Diabetes, Hyperlipidemia, and Fatty Liver in Transgenic Mice on a High Fat Diet

Akifumi Kushiyama; Nobuhiro Shojima; Takehide Ogihara; Kouichi Inukai; Hideyuki Sakoda; Midori Fujishiro; Yasushi Fukushima; Motonobu Anai; Hiraku Ono; Nanao Horike; Amelia Y.I. Viana; Yasunobu Uchijima; Koichi Nishiyama; Tatsuo Shimosawa; Toshiro Fujita; Hideki Katagiri; Yoshitomo Oka; Hiroki Kurihara; Tomoichiro Asano

Resistin and resistin-like molecules (RELMs) are a family of proteins reportedly related to insulin resistance and inflammation. Because the serum concentration and intestinal expression level of RELMβ were elevated in insulin-resistant rodent models, in this study we investigated the effect of RELMβ on insulin signaling and metabolism using transgenic mice and primary cultured hepatocytes. First, transgenic mice with hepatic RELMβ overexpression were shown to exhibit significant hyperglycemia, hyperlipidemia, fatty liver, and pancreatic islet enlargement when fed a high fat diet. Hyperinsulinemic glucose clamp showed a decreased glucose infusion rate due to increased hepatic glucose production. In addition, the expression levels of IRS-1 and IRS-2 proteins as well as the degrees of insulin-induced phosphatidylinositol 3-kinase and Akt activations were attenuated in RELMβ transgenic mice. Similar down-regulations of IRS-1 and IRS-2 proteins were observed in primary cultured hepatocytes chronically treated (for 24 h) with RELMβ, suggesting the insulin resistance-inducing effect of RELMβ to be direct. Furthermore, it was shown that RELMβ acutely and markedly activates ERK and p38, while weakly activating JNK, in primary cultured hepatocytes. This increased basal p38 phosphorylation level was also observed in the livers of RELMβ transgenic mice. In conclusion, RELMβ, a gut-derived hormone, impairs insulin signaling probably via the activations of classic MAPKs, and increased expression of RELMβ may be involved in the pathogenesis of glucose intolerance and hyperlipidemia in some insulin-resistant models. Thus, RELMβ is a potentially useful marker for assessing insulin resistance and may also be a target for future novel anti-diabetic agents.


Molecular and Cellular Biology | 2007

Calpain 6 Is Involved in Microtubule Stabilization and Cytoskeletal Organization

Kazuo Tonami; Yukiko Kurihara; Hiroyuki Aburatani; Yasunobu Uchijima; Tomoichiro Asano; Hiroki Kurihara

ABSTRACT The calpains are a family of Ca2+-dependent cysteine proteases implicated in various biological processes. In this family, calpain 6 (Capn6) is unique in that it lacks the active-site cysteine residues requisite for protease activity. During the search for genes downstream of the endothelin 1 (ET-1) signaling in pharyngeal-arch development, we identified Capn6. After confirming that the expression of Capn6 in pharyngeal arches is downregulated in ET-1-null embryos by in situ hybridization, we investigated its function. In Capn6-transfected cells, cytokinesis was retarded and was often aborted to yield multinucleated cells. Capn6 overexpression also caused the formation of microtubule bundles rich in acetylated α-tubulin and resistant to the depolymerizing activity of nocodazole. Green fluorescent protein-Capn6 overexpression, immunostaining for endogenous Capn6, and biochemical analysis demonstrated interaction between Capn6 and microtubules, which appeared to be mainly mediated by domain III. Furthermore, RNA interference-mediated Capn6 inactivation caused microtubule instability with a loss of acetylated α-tubulin and induced actin reorganization, resulting in lamellipodium formation with membrane ruffling. Taken together, these results indicate that Capn6 is a microtubule-stabilizing protein expressed in embryonic tissues that may be involved in the regulation of microtubule dynamics and cytoskeletal organization.


Development | 2008

Recombinase-mediated cassette exchange reveals the selective use of Gq/G11-dependent and -independent endothelin 1/endothelin type A receptor signaling in pharyngeal arch development.

Takahiro Sato; Yumiko Kawamura; Rieko Asai; Tomokazu Amano; Yasunobu Uchijima; Dagmara A. Dettlaff-Swiercz; Stefan Offermanns; Yukiko Kurihara; Hiroki Kurihara

The endothelin (Edn) system comprises three ligands (Edn1, Edn2 and Edn3) and their G-protein-coupled type A (Ednra) and type B (Ednrb) receptors. During embryogenesis, the Edn1/Ednra signaling is thought to regulate the dorsoventral axis patterning of pharyngeal arches via Dlx5/Dlx6 upregulation. To further clarify the underlying mechanism, we have established mice in which gene cassettes can be efficiently knocked-in into the Ednra locus using recombinase-mediated cassette exchange (RMCE) based on the Cre-lox system. The first homologous recombination introducing mutant lox-flanked Neo resulted in homeotic transformation of the lower jaw to an upper jaw, as expected. Subsequent RMCE-mediated knock-in of lacZ targeted its expression to the cranial/cardiac neural crest derivatives as well as in mesoderm-derived head mesenchyme. Knock-in of Ednra cDNA resulted in a complete rescue of craniofacial defects of Ednra-null mutants. By contrast, Ednrb cDNA could not rescue them except for the most distal pharyngeal structures. At early stages, the expression of Dlx5, Dlx6 and their downstream genes was downregulated and apoptotic cells distributed distally in the mandible of Ednrb-knock-in embryos. These results, together with similarity in craniofacial defects between Ednrb-knock-in mice and neural-crest-specific Gαq/Gα11-deficient mice, indicate that the dorsoventral axis patterning of pharyngeal arches is regulated by the Ednra-selective, Gq/G11-dependent signaling, while the formation of the distal pharyngeal region is under the control of a Gq/G11-independent signaling, which can be substituted by Ednrb. This RMCE-mediated knock-in system can serve as a useful tool for studies on gene functions in craniofacial development.


Diabetologia | 2005

Serum concentrations of resistin-like molecules β and γ are elevated in high-fat-fed and obese db/db mice, with increased production in the intestinal tract and bone marrow

Nobuhiro Shojima; Takehide Ogihara; Kouichi Inukai; Midori Fujishiro; Hideyuki Sakoda; Akifumi Kushiyama; Hideki Katagiri; Motonobu Anai; Hiraku Ono; Yasushi Fukushima; N. Horike; Amelia Y.I. Viana; Yasunobu Uchijima; Hiroki Kurihara; Tomoichiro Asano

Aims/hypothesisResistin and the resistin-like molecules (RELMs) comprise a novel class of cysteine-rich proteins. Among the RELMs, RELMβ and RELMγ are produced in non-adipocyte tissues, but the regulation of their expression and their physiological roles are largely unknown. We investigated in mice the tissue distribution and dimer formation of RELMβ and RELMγ and then examined whether their serum concentrations and tissue expression levels are related to insulin resistance.MethodsSpecific antibodies against RELMβ and RELMγ were generated. Dimer formation was examined using COS cells and the colon. RELMβ and RELMγ tissue localisation and expression levels were analysed by an RNase protection assay, immunoblotting and immunohistochemical study. Serum concentrations in high-fat-fed and db/db mice were also measured using the specific antibodies.ResultsThe intestinal tract produces RELMβ and RELMγ, and colonic epithelial cells in particular express both RELMβ and RELMγ. In addition, RELMβ and RELMγ were shown to form a homodimer and a heterodimer with each other, in an overexpression system using cultured cells, and in mouse colon and serum. Serum RELMβ and RELMγ levels in high-fat-fed mice were markedly higher than those in mice fed normal chow. Serum RELMβ and RELMγ concentrations were also clearly higher in db/db mice than in lean littermates. Tissue expression levels revealed that elevated serum concentrations of RELMβ and RELMγ are attributable to increased production in the colon and bone marrow.Conclusions/interpretationRELMβ and RELMγ form homo/heterodimers, which are secreted into the circulation. Serum concentrations of RELMβ and RELMγ may be a novel intestinal-tract-mediating regulator of insulin sensitivity, possibly involved in insulin resistance induced by obesity and a high-fat diet.

Collaboration


Dive into the Yasunobu Uchijima's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hiraku Ono

Saitama Medical University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge