Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yasushi Okuno is active.

Publication


Featured researches published by Yasushi Okuno.


Nucleic Acids Research | 2004

The KEGG resource for deciphering the genome

Minoru Kanehisa; Susumu Goto; Shuichi Kawashima; Yasushi Okuno; Masahiro Hattori

A grand challenge in the post-genomic era is a complete computer representation of the cell and the organism, which will enable computational prediction of higher-level complexity of cellular processes and organism behavior from genomic information. Toward this end we have been developing a knowledge-based approach for network prediction, which is to predict, given a complete set of genes in the genome, the protein interaction networks that are responsible for various cellular processes. KEGG at http://www.genome.ad.jp/kegg/ is the reference knowledge base that integrates current knowledge on molecular interaction networks such as pathways and complexes (PATHWAY database), information about genes and proteins generated by genome projects (GENES/SSDB/KO databases) and information about biochemical compounds and reactions (COMPOUND/GLYCAN/REACTION databases). These three types of database actually represent three graph objects, called the protein network, the gene universe and the chemical universe. New efforts are being made to abstract knowledge, both computationally and manually, about ortholog clusters in the KO (KEGG Orthology) database, and to collect and analyze carbohydrate structures in the GLYCAN database.


International Journal of Cancer | 2009

Identification of novel microRNA targets based on microRNA signatures in bladder cancer

Takahiro Ichimi; Hideki Enokida; Yasushi Okuno; Ryo Kunimoto; Takeshi Chiyomaru; Ken Kawamoto; Kazuya Kawahara; Kazuki Toki; Kazumori Kawakami; Kenryu Nishiyama; Gozoh Tsujimoto; Masayuki Nakagawa; Naohiko Seki

MicroRNAs (miRNAs) are small noncoding RNAs that negatively regulate protein‐coding genes. To identify miRNAs that have a tumor suppressive function in bladder cancer (BC), 156 miRNAs were screened in 14 BCs, 5 normal bladder epithelium (NBE) samples and 3 BC cell lines. We identified a subset of 7 miRNAs (miR‐145, miR‐30a‐3p, miR‐133a, miR‐133b, miR‐195, miR‐125b and miR‐199a*) that were significantly downregulated in BCs. To confirm these results, 104 BCs and 31 NBEs were subjected to real‐time RT‐PCR‐based experiments, and the expression levels of each miRNA were significantly downregulated in BCs (p < 0.0001 in all). Receiver‐operating characteristic curve analysis revealed that the expression levels of these miRNAs had good sensitivity (>70%) and specificity (>75%) to distinguish BC from NBE. Our target search algorithm and gene‐expression profiling in BCs (Kawakami et al., Oncol Rep 2006;16:521–31) revealed that Keratin7 (KRT7) mRNA was a common target of the downregulated miRNAs, and the mRNA expression levels of KRT7 were significantly higher in BCs than in NBEs (p = 0.0004). Spearman rank correlation analysis revealed significant inverse correlations between KRT7 mRNA expression and each downregulated miRNA (p < 0.0001 in all). Gain‐of‐function analysis revealed that KRT7 mRNA was significantly reduced by transfection of 3 miRNAs (miR‐30‐3p, miR‐133a and miR‐199a*) in the BC cell line (KK47). In addition, significant decreases in cell growth were observed after transfection of 3 miRNAs and si‐KRT7 in KK47, suggesting that miR‐30‐3p, miR‐133a and miR‐199a* may have a tumor suppressive function through the mechanism underlying transcriptional repression of KRT7.


Nature Medicine | 2010

Salt-sensitive hypertension in circadian clock-deficient Cry-null mice involves dysregulated adrenal Hsd3b6.

Masao Doi; Yukari Takahashi; Rie Komatsu; Fumiyoshi Yamazaki; Hiroyuki Yamada; Shogo Haraguchi; Noriaki Emoto; Yasushi Okuno; Gozoh Tsujimoto; Akihiro Kanematsu; Osamu Ogawa; Takeshi Todo; Kazuyoshi Tsutsui; Gijsbertus T. J. van der Horst; Hitoshi Okamura

Malfunction of the circadian clock has been linked to the pathogenesis of a variety of diseases. We show that mice lacking the core clock components Cryptochrome-1 (Cry1) and Cryptochrome-2 (Cry2) (Cry-null mice) show salt-sensitive hypertension due to abnormally high synthesis of the mineralocorticoid aldosterone by the adrenal gland. An extensive search for the underlying cause led us to identify type VI 3β-hydroxyl-steroid dehydrogenase (Hsd3b6) as a new hypertension risk factor in mice. Hsd3b6 is expressed exclusively in aldosterone-producing cells and is under transcriptional control of the circadian clock. In Cry-null mice, Hsd3b6 messenger RNA and protein levels are constitutively high, leading to a marked increase in 3β-hydroxysteroid dehydrogenase-isomerase (3β-HSD) enzymatic activity and, as a consequence, enhanced aldosterone production. These data place Hsd3b6 in a pivotal position through which circadian clock malfunction is coupled to the development of hypertension. Translation of these findings to humans will require clinical examination of human HSD3B1 gene, which we found to be functionally similar to mouse Hsd3b6.


Nucleic Acids Research | 2002

LIGAND: database of chemical compounds and reactions in biological pathways

Susumu Goto; Yasushi Okuno; Masahiro Hattori; Takaaki Nishioka; Minoru Kanehisa

LIGAND is a composite database comprising three sections: COMPOUND for the information about metabolites and other chemical compounds, REACTION for the collection of substrate-product relations representing metabolic and other reactions, and ENZYME for the information about enzyme molecules. The current release (as of September 7, 2001) includes 7298 compounds, 5166 reactions and 3829 enzymes. In addition to the keyword search provided by the DBGET/LinkDB system, a substructure search to the COMPOUND and REACTION sections is now available through the World Wide Web (http://www.genome.ad.jp/ligand/). LIGAND may be also downloaded by anonymous FTP (ftp://ftp.genome.ad.jp/pub/kegg/ligand/).


Science | 2013

Mice Genetically Deficient in Vasopressin V1a and V1b Receptors Are Resistant to Jet Lag

Yoshiaki Yamaguchi; Toru Suzuki; Yasutaka Mizoro; Hiroshi Kori; Kazuki Okada; Yulin Chen; Jean-Michel Fustin; Fumiyoshi Yamazaki; Naoki Mizuguchi; Jing Zhang; Xin Dong; Gozoh Tsujimoto; Yasushi Okuno; Masao Doi; Hitoshi Okamura

Resetting the Circadian Clock Fatigue and other symptoms of jet lag arise when the bodys internal circadian clock is out of sync with environmental light-dark cycles. Studying genetically modified mice lacking two receptors for the peptide hormone vasopressin under experimental conditions simulating jet lag, Yamaguchi et al. (p. 85; see the Perspective by Hastings) concluded that vasopressin signaling in the suprachiasmatic nucleus (SCN)—a region of the brain known to control circadian rhythms—impedes adjustment to the environmental clock. Infusion of vasopressin receptor antagonists directly into the SCN of wild-type mice accelerated their recovery from jet lag, suggesting that this pathway may merit further investigation as a pharmacological target for treating jet lag. In mice, the pace of recovery from jet lag is partly determined by vasopressin signaling in a certain region of the brain. [Also see Perspective by Hastings] Jet-lag symptoms arise from temporal misalignment between the internal circadian clock and external solar time. We found that circadian rhythms of behavior (locomotor activity), clock gene expression, and body temperature immediately reentrained to phase-shifted light-dark cycles in mice lacking vasopressin receptors V1a and V1b (V1a–/–V1b–/–). Nevertheless, the behavior of V1a–/–V1b–/– mice was still coupled to the internal clock, which oscillated normally under standard conditions. Experiments with suprachiasmatic nucleus (SCN) slices in culture suggested that interneuronal communication mediated by V1a and V1b confers on the SCN an intrinsic resistance to external perturbation. Pharmacological blockade of V1a and V1b in the SCN of wild-type mice resulted in accelerated recovery from jet lag, which highlights the potential of vasopressin signaling as a therapeutic target for management of circadian rhythm misalignment, such as jet lag and shift work.


Clinical Cancer Research | 2014

Two novel ALK mutations mediate acquired resistance to the next generation ALK inhibitor alectinib

Ryohei Katayama; Luc Friboulet; Sumie Koike; Elizabeth L. Lockerman; Tahsin M. Khan; Justin F. Gainor; Anthony John Iafrate; Kengo Takeuchi; Taiji M; Yasushi Okuno; Naoya Fujita; J. A. Engelman; Alice T. Shaw

Purpose: The first-generation ALK tyrosine kinase inhibitor (TKI) crizotinib is a standard therapy for patients with ALK-rearranged non–small cell lung cancer (NSCLC). Several next-generation ALK-TKIs have entered the clinic and have shown promising activity in crizotinib-resistant patients. As patients still relapse even on these next-generation ALK-TKIs, we examined mechanisms of resistance to the next-generation ALK-TKI alectinib and potential strategies to overcome this resistance. Experimental Design: We established a cell line model of alectinib resistance, and analyzed a resistant tumor specimen from a patient who had relapsed on alectinib. We developed Ba/F3 models harboring alectinib-resistant ALK mutations and evaluated the potency of other next-generation ALK-TKIs in these models. We tested the antitumor activity of the next-generation ALK-TKI ceritinib in the patient with acquired resistance to alectinib. To elucidate structure–activity relationships of ALK mutations, we performed computational thermodynamic simulation with MP-CAFEE. Results: We identified a novel V1180L gatekeeper mutation from the cell line model and a second novel I1171T mutation from the patient who developed resistance to alectinib. Both ALK mutations conferred resistance to alectinib as well as to crizotinib, but were sensitive to ceritinib and other next-generation ALK-TKIs. Treatment of the patient with ceritinib led to a marked response. Thermodynamics simulation suggests that both mutations lead to distinct structural alterations that decrease the binding affinity with alectinib. Conclusions: We have identified two novel ALK mutations arising after alectinib exposure that are sensitive to other next-generation ALK-TKIs. The ability of ceritinib to overcome alectinib-resistance mutations suggests a potential role for sequential therapy with multiple next-generation ALK-TKIs. Clin Cancer Res; 20(22); 5686–96. ©2014 AACR.


Molecular and Cellular Biology | 2007

Germinal Center Marker GL7 Probes Activation-Dependent Repression of N-Glycolylneuraminic Acid, a Sialic Acid Species Involved in the Negative Modulation of B-Cell Activation

Yuko Naito; Hiromu Takematsu; Susumu Koyama; Shizu Miyake; Harumi Yamamoto; Reiko Fujinawa; Manabu Sugai; Yasushi Okuno; Gozoh Tsujimoto; Toshiyuki Yamaji; Yasuhiro Hashimoto; Shigeyoshi Itohara; Toshisuke Kawasaki; Akemi Suzuki; Yasunori Kozutsumi

ABSTRACT Sialic acid (Sia) is a family of acidic nine-carbon sugars that occupies the nonreducing terminus of glycan chains. Diversity of Sia is achieved by variation in the linkage to the underlying sugar and modification of the Sia molecule. Here we identified Sia-dependent epitope specificity for GL7, a rat monoclonal antibody, to probe germinal centers upon T cell-dependent immunity. GL7 recognizes sialylated glycan(s), the α2,6-linked N-acetylneuraminic acid (Neu5Ac) on a lactosamine glycan chain(s), in both Sia modification- and Sia linkage-dependent manners. In mouse germinal center B cells, the expression of the GL7 epitope was upregulated due to the in situ repression of CMP-Neu5Ac hydroxylase (Cmah), the enzyme responsible for Sia modification of Neu5Ac to Neu5Gc. Such Cmah repression caused activation-dependent dynamic reduction of CD22 ligand expression without losing α2,6-linked sialylation in germinal centers. The in vivo function of Cmah was analyzed using gene-disrupted mice. Phenotypic analyses showed that Neu5Gc glycan functions as a negative regulator for B-cell activation in assays of T-cell-independent immunization response and splenic B-cell proliferation. Thus, Neu5Gc is required for optimal negative regulation, and the reaction is specifically suppressed in activated B cells, i.e., germinal center B cells.


Nucleic Acids Research | 2007

GLIDA: GPCR—ligand database for chemical genomics drug discovery—database and tools update

Yasushi Okuno; Akiko Tamon; Hiroaki Yabuuchi; Satoshi Niijima; Yohsuke Minowa; Koichiro Tonomura; Ryo Kunimoto; Chunlai Feng

G-protein coupled receptors (GPCRs) represent one of the most important families of drug targets in pharmaceutical development. GLIDA is a public GPCR-related Chemical Genomics database that is primarily focused on the integration of information between GPCRs and their ligands. It provides interaction data between GPCRs and their ligands, along with chemical information on the ligands, as well as biological information regarding GPCRs. These data are connected with each other in a relational database, allowing users in the field of Chemical Genomics research to easily retrieve such information from either biological or chemical starting points. GLIDA includes a variety of similarity search functions for the GPCRs and for their ligands. Thus, GLIDA can provide correlation maps linking the searched homologous GPCRs (or ligands) with their ligands (or GPCRs). By analyzing the correlation patterns between GPCRs and ligands, we can gain more detailed knowledge about their conserved molecular recognition patterns and improve drug design efforts by focusing on inferred candidates for GPCR-specific drugs. This article provides a summary of the GLIDA database and user facilities, and describes recent improvements to database design, data contents, ligand classification programs, similarity search options and graphical interfaces. GLIDA is publicly available at http://pharminfo.pharm.kyoto-u.ac.jp/services/glida/. We hope that it will prove very useful for Chemical Genomics research and GPCR-related drug discovery.


Molecular Systems Biology | 2014

Analysis of multiple compound–protein interactions reveals novel bioactive molecules

Hiroaki Yabuuchi; Satoshi Niijima; Hiromu Takematsu; Tomomi Ida; Takatsugu Hirokawa; Takafumi Hara; Teppei Ogawa; Yohsuke Minowa; Gozoh Tsujimoto; Yasushi Okuno

The discovery of novel bioactive molecules advances our systems‐level understanding of biological processes and is crucial for innovation in drug development. For this purpose, the emerging field of chemical genomics is currently focused on accumulating large assay data sets describing compound–protein interactions (CPIs). Although new target proteins for known drugs have recently been identified through mining of CPI databases, using these resources to identify novel ligands remains unexplored. Herein, we demonstrate that machine learning of multiple CPIs can not only assess drug polypharmacology but can also efficiently identify novel bioactive scaffold‐hopping compounds. Through a machine‐learning technique that uses multiple CPIs, we have successfully identified novel lead compounds for two pharmaceutically important protein families, G‐protein‐coupled receptors and protein kinases. These novel compounds were not identified by existing computational ligand‐screening methods in comparative studies. The results of this study indicate that data derived from chemical genomics can be highly useful for exploring chemical space, and this systems biology perspective could accelerate drug discovery processes.


Endocrinology | 2012

Cbx2, a polycomb group gene, is required for Sry gene expression in mice.

Yuko Katoh-Fukui; Kanako Miyabayashi; Tomoko Komatsu; Akiko Owaki; Takashi Baba; Yuichi Shima; Tomohide Kidokoro; Yoshiakira Kanai; Andreas Schedl; Dagmar Wilhelm; Peter Koopman; Yasushi Okuno; Ken-ichirou Morohashi

Mice lacking the function of the polycomb group protein CBX2 (chromobox homolog 2; also known as M33) show defects in gonadal, adrenal, and splenic development. In particular, XY knockout (KO) mice develop ovaries but not testes, and the gonads are hypoplastic in both sexes. However, how CBX2 regulates development of these tissues remains largely unknown. In the present study, we used microarray, RT-PCR, and immunohistochemical analyses to show that the expression of Sry, Sox9, Lhx9, Ad4BP/SF-1, Dax-1, Gata4, Arx, and Dmrt1, genes encoding transcription factors essential for gonadal development, is affected in Cbx2 KO gonads. Male-to-female sex reversal in Cbx2 KO mice was rescued by crossing them with transgenic mice displaying forced expression of Sry or Sox9. However, testes remained hypoplastic in these mice, indicating that the size and the sex of the gonad are determined by different sets of genes. Our study implicates Cbx2 in testis differentiation through regulating Sry gene expression.

Collaboration


Dive into the Yasushi Okuno's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Toshiyuki Sakaeda

Kyoto Pharmaceutical University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge