Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Minoru Kanehisa is active.

Publication


Featured researches published by Minoru Kanehisa.


Nucleic Acids Research | 1999

KEGG: Kyoto Encyclopedia of Genes and Genomes

Minoru Kanehisa; Susumu Goto

KEGG (Kyoto Encyclopedia of Genes and Genomes) is a knowledge base for systematic analysis of gene functions, linking genomic information with higher order functional information. The genomic information is stored in the GENES database, which is a collection of gene catalogs for all the completely sequenced genomes and some partial genomes with up-to-date annotation of gene functions. The higher order functional information is stored in the PATHWAY database, which contains graphical representations of cellular processes, such as metabolism, membrane transport, signal transduction and cell cycle. The PATHWAY database is supplemented by a set of ortholog group tables for the information about conserved subpathways (pathway motifs), which are often encoded by positionally coupled genes on the chromosome and which are especially useful in predicting gene functions. A third database in KEGG is LIGAND for the information about chemical compounds, enzyme molecules and enzymatic reactions. KEGG provides Java graphics tools for browsing genome maps, comparing two genome maps and manipulating expression maps, as well as computational tools for sequence comparison, graph comparison and path computation. The KEGG databases are daily updated and made freely available (http://www. genome.ad.jp/kegg/).


Nucleic Acids Research | 2007

KEGG for linking genomes to life and the environment.

Minoru Kanehisa; Michihiro Araki; Susumu Goto; Masahiro Hattori; Mika Hirakawa; Masumi Itoh; Toshiaki Katayama; Shuichi Kawashima; Shujiro Okuda; Toshiaki Tokimatsu; Yoshihiro Yamanishi

KEGG (http://www.genome.jp/kegg/) is a database of biological systems that integrates genomic, chemical and systemic functional information. KEGG provides a reference knowledge base for linking genomes to life through the process of PATHWAY mapping, which is to map, for example, a genomic or transcriptomic content of genes to KEGG reference pathways to infer systemic behaviors of the cell or the organism. In addition, KEGG provides a reference knowledge base for linking genomes to the environment, such as for the analysis of drug-target relationships, through the process of BRITE mapping. KEGG BRITE is an ontology database representing functional hierarchies of various biological objects, including molecules, cells, organisms, diseases and drugs, as well as relationships among them. KEGG PATHWAY is now supplemented with a new global map of metabolic pathways, which is essentially a combined map of about 120 existing pathway maps. In addition, smaller pathway modules are defined and stored in KEGG MODULE that also contains other functional units and complexes. The KEGG resource is being expanded to suit the needs for practical applications. KEGG DRUG contains all approved drugs in the US and Japan, and KEGG DISEASE is a new database linking disease genes, pathways, drugs and diagnostic markers.


Nucleic Acids Research | 2012

KEGG for integration and interpretation of large-scale molecular data sets

Minoru Kanehisa; Susumu Goto; Yoko Sato; Miho Furumichi; Mao Tanabe

Kyoto Encyclopedia of Genes and Genomes (KEGG, http://www.genome.jp/kegg/ or http://www.kegg.jp/) is a database resource that integrates genomic, chemical and systemic functional information. In particular, gene catalogs from completely sequenced genomes are linked to higher-level systemic functions of the cell, the organism and the ecosystem. Major efforts have been undertaken to manually create a knowledge base for such systemic functions by capturing and organizing experimental knowledge in computable forms; namely, in the forms of KEGG pathway maps, BRITE functional hierarchies and KEGG modules. Continuous efforts have also been made to develop and improve the cross-species annotation procedure for linking genomes to the molecular networks through the KEGG Orthology system. Here we report KEGG Mapper, a collection of tools for KEGG PATHWAY, BRITE and MODULE mapping, enabling integration and interpretation of large-scale data sets. We also report a variant of the KEGG mapping procedure to extend the knowledge base, where different types of data and knowledge, such as disease genes and drug targets, are integrated as part of the KEGG molecular networks. Finally, we describe recent enhancements to the KEGG content, especially the incorporation of disease and drug information used in practice and in society, to support translational bioinformatics.


Nucleic Acids Research | 2004

The KEGG resource for deciphering the genome

Minoru Kanehisa; Susumu Goto; Shuichi Kawashima; Yasushi Okuno; Masahiro Hattori

A grand challenge in the post-genomic era is a complete computer representation of the cell and the organism, which will enable computational prediction of higher-level complexity of cellular processes and organism behavior from genomic information. Toward this end we have been developing a knowledge-based approach for network prediction, which is to predict, given a complete set of genes in the genome, the protein interaction networks that are responsible for various cellular processes. KEGG at http://www.genome.ad.jp/kegg/ is the reference knowledge base that integrates current knowledge on molecular interaction networks such as pathways and complexes (PATHWAY database), information about genes and proteins generated by genome projects (GENES/SSDB/KO databases) and information about biochemical compounds and reactions (COMPOUND/GLYCAN/REACTION databases). These three types of database actually represent three graph objects, called the protein network, the gene universe and the chemical universe. New efforts are being made to abstract knowledge, both computationally and manually, about ortholog clusters in the KO (KEGG Orthology) database, and to collect and analyze carbohydrate structures in the GLYCAN database.


Nucleic Acids Research | 2006

From genomics to chemical genomics: new developments in KEGG

Minoru Kanehisa; Susumu Goto; Masahiro Hattori; Kiyoko F. Aoki-Kinoshita; Masumi Itoh; Shuichi Kawashima; Toshiaki Katayama; Michihiro Araki; Mika Hirakawa

The increasing amount of genomic and molecular information is the basis for understanding higher-order biological systems, such as the cell and the organism, and their interactions with the environment, as well as for medical, industrial and other practical applications. The KEGG resource () provides a reference knowledge base for linking genomes to biological systems, categorized as building blocks in the genomic space (KEGG GENES) and the chemical space (KEGG LIGAND), and wiring diagrams of interaction networks and reaction networks (KEGG PATHWAY). A fourth component, KEGG BRITE, has been formally added to the KEGG suite of databases. This reflects our attempt to computerize functional interpretations as part of the pathway reconstruction process based on the hierarchically structured knowledge about the genomic, chemical and network spaces. In accordance with the new chemical genomics initiatives, the scope of KEGG LIGAND has been significantly expanded to cover both endogenous and exogenous molecules. Specifically, RPAIR contains curated chemical structure transformation patterns extracted from known enzymatic reactions, which would enable analysis of genome-environment interactions, such as the prediction of new reactions and new enzyme genes that would degrade new environmental compounds. Additionally, drug information is now stored separately and linked to new KEGG DRUG structure maps.


Nucleic Acids Research | 2014

Data, information, knowledge and principle: back to metabolism in KEGG

Minoru Kanehisa; Susumu Goto; Yoko Sato; Masayuki Kawashima; Miho Furumichi; Mao Tanabe

In the hierarchy of data, information and knowledge, computational methods play a major role in the initial processing of data to extract information, but they alone become less effective to compile knowledge from information. The Kyoto Encyclopedia of Genes and Genomes (KEGG) resource (http://www.kegg.jp/ or http://www.genome.jp/kegg/) has been developed as a reference knowledge base to assist this latter process. In particular, the KEGG pathway maps are widely used for biological interpretation of genome sequences and other high-throughput data. The link from genomes to pathways is made through the KEGG Orthology system, a collection of manually defined ortholog groups identified by K numbers. To better automate this interpretation process the KEGG modules defined by Boolean expressions of K numbers have been expanded and improved. Once genes in a genome are annotated with K numbers, the KEGG modules can be computationally evaluated revealing metabolic capacities and other phenotypic features. The reaction modules, which represent chemical units of reactions, have been used to analyze design principles of metabolic networks and also to improve the definition of K numbers and associated annotations. For translational bioinformatics, the KEGG MEDICUS resource has been developed by integrating drug labels (package inserts) used in society.


Nucleic Acids Research | 2010

KEGG for representation and analysis of molecular networks involving diseases and drugs.

Minoru Kanehisa; Susumu Goto; Miho Furumichi; Mao Tanabe; Mika Hirakawa

Most human diseases are complex multi-factorial diseases resulting from the combination of various genetic and environmental factors. In the KEGG database resource (http://www.genome.jp/kegg/), diseases are viewed as perturbed states of the molecular system, and drugs as perturbants to the molecular system. Disease information is computerized in two forms: pathway maps and gene/molecule lists. The KEGG PATHWAY database contains pathway maps for the molecular systems in both normal and perturbed states. In the KEGG DISEASE database, each disease is represented by a list of known disease genes, any known environmental factors at the molecular level, diagnostic markers and therapeutic drugs, which may reflect the underlying molecular system. The KEGG DRUG database contains chemical structures and/or chemical components of all drugs in Japan, including crude drugs and TCM (Traditional Chinese Medicine) formulas, and drugs in the USA and Europe. This database also captures knowledge about two types of molecular networks: the interaction network with target molecules, metabolizing enzymes, other drugs, etc. and the chemical structure transformation network in the history of drug development. The new disease/drug information resource named KEGG MEDICUS can be used as a reference knowledge base for computational analysis of molecular networks, especially, by integrating large-scale experimental datasets.


Nucleic Acids Research | 2007

KAAS: an automatic genome annotation and pathway reconstruction server

Yuki Moriya; Masumi Itoh; Shujiro Okuda; Akiyasu C. Yoshizawa; Minoru Kanehisa

The number of complete and draft genomes is rapidly growing in recent years, and it has become increasingly important to automate the identification of functional properties and biological roles of genes in these genomes. In the KEGG database, genes in complete genomes are annotated with the KEGG orthology (KO) identifiers, or the K numbers, based on the best hit information using Smith-Waterman scores as well as by the manual curation. Each K number represents an ortholog group of genes, and it is directly linked to an object in the KEGG pathway map or the BRITE functional hierarchy. Here, we have developed a web-based server called KAAS (KEGG Automatic Annotation Server: http://www.genome.jp/kegg/kaas/) i.e. an implementation of a rapid method to automatically assign K numbers to genes in the genome, enabling reconstruction of KEGG pathways and BRITE hierarchies. The method is based on sequence similarities, bi-directional best hit information and some heuristics, and has achieved a high degree of accuracy when compared with the manually curated KEGG GENES database.The number of complete and draft genomes is rapidly growing in recent years, and it has become increasingly important to automate the identification of functional properties and biological roles of genes in these genomes. In the KEGG database, genes in complete genomes are annotated with the KEGG orthology (KO) identifiers, or the K numbers, based on the best hit information using Smith–Waterman scores as well as by the manual curation. Each K number represents an ortholog group of genes, and it is directly linked to an object in the KEGG pathway map or the BRITE functional hierarchy. Here, we have developed a web-based server called KAAS (KEGG Automatic Annotation Server: http://www.genome.jp/kegg/kaas/) i.e. an implementation of a rapid method to automatically assign K numbers to genes in the genome, enabling reconstruction of KEGG pathways and BRITE hierarchies. The method is based on sequence similarities, bi-directional best hit information and some heuristics, and has achieved a high degree of accuracy when compared with the manually curated KEGG GENES database.


The Lancet | 2001

Whole genome sequencing of meticillin-resistant Staphylococcus aureus

Makoto Kuroda; Toshiko Ohta; Ikuo Uchiyama; Tadashi Baba; Harumi Yuzawa; Ichizo Kobayashi; Longzhu Cui; Akio Oguchi; Ken-ichi Aoki; Yoshimi Nagai; JianQi Lian; Teruyo Ito; Mutsumi Kanamori; Hiroyuki Matsumaru; Atsushi Maruyama; Hiroyuki Murakami; Akira Hosoyama; Yoko Mizutani-Ui; Noriko Takahashi; Toshihiko Sawano; Ryu-ichi Inoue; Chikara Kaito; Kazuhisa Sekimizu; Hideki Hirakawa; Susumu Goto; Junko Yabuzaki; Minoru Kanehisa; Atsushi Yamashita; Kenshiro Oshima; Keiko Furuya

BACKGROUND Staphylococcus aureus is one of the major causes of community-acquired and hospital-acquired infections. It produces numerous toxins including superantigens that cause unique disease entities such as toxic-shock syndrome and staphylococcal scarlet fever, and has acquired resistance to practically all antibiotics. Whole genome analysis is a necessary step towards future development of countermeasures against this organism. METHODS Whole genome sequences of two related S aureus strains (N315 and Mu50) were determined by shot-gun random sequencing. N315 is a meticillin-resistant S aureus (MRSA) strain isolated in 1982, and Mu50 is an MRSA strain with vancomycin resistance isolated in 1997. The open reading frames were identified by use of GAMBLER and GLIMMER programs, and annotation of each was done with a BLAST homology search, motif analysis, and protein localisation prediction. FINDINGS The Staphylococcus genome was composed of a complex mixture of genes, many of which seem to have been acquired by lateral gene transfer. Most of the antibiotic resistance genes were carried either by plasmids or by mobile genetic elements including a unique resistance island. Three classes of new pathogenicity islands were identified in the genome: a toxic-shock-syndrome toxin island family, exotoxin islands, and enterotoxin islands. In the latter two pathogenicity islands, clusters of exotoxin and enterotoxin genes were found closely linked with other gene clusters encoding putative pathogenic factors. The analysis also identified 70 candidates for new virulence factors. INTERPRETATION The remarkable ability of S aureus to acquire useful genes from various organisms was revealed through the observation of genome complexity and evidence of lateral gene transfer. Repeated duplication of genes encoding superantigens explains why S aureus is capable of infecting humans of diverse genetic backgrounds, eliciting severe immune reactions. Investigation of many newly identified gene products, including the 70 putative virulence factors, will greatly improve our understanding of the biology of staphylococci and the processes of infectious diseases caused by S aureus.


Genomics | 1992

A knowledge base for predicting protein localization sites in eukaryotic cells

Kenta Nakai; Minoru Kanehisa

To automate examination of massive amounts of sequence data for biological function, it is important to computerize interpretation based on empirical knowledge of sequence-function relationships. For this purpose, we have been constructing a knowledge base by organizing various experimental and computational observations as a collection of if—then rules. Here we report an expert system, which utilizes this knowledge base, for predicting localization sites of proteins only from the information on the amino acid sequence and the source origin. We collected data for 401 eukaryotic proteins with known localization sites (subcellular and extracellular) and divided them into training data and testing data. Fourteen localization sites were distinguished for animal cells and 17 for plant cells. When sorting signals were not well characterized experimentally, various sequence features were computationally derived from the training data. It was found that 66% of the training data and 59% of the testing data were correctly predicted by our expert system. This artificial intelligence approach is powerful and flexible enough to be used in genome analyses.

Collaboration


Dive into the Minoru Kanehisa's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge