Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yasuyuki Sasaki is active.

Publication


Featured researches published by Yasuyuki Sasaki.


Journal of Bacteriology | 2002

Codenitrification and Denitrification Are Dual Metabolic Pathways through Which Dinitrogen Evolves from Nitrate in Streptomyces antibioticus

Yasuyuki Kumon; Yasuyuki Sasaki; Isao Kato; Naoki Takaya; Hirofumi Shoun; Teruhiko Beppu

We screened actinomycete strains for dinitrogen (N(2))-producing activity and discovered that Streptomyces antibioticus B-546 evolves N(2) and some nitrous oxide (N(2)O) from nitrate (NO(3)(-)). Most of the N(2) that evolved from the heavy isotope ([(15)N]NO(3)(-)) was (15)N(14)N, indicating that this nitrogen species consists of two atoms, one arising from NO(3)(-) and the other from different sources. This phenomenon is similar to codenitrification in fungi. The strain also evolved less, but significant, amounts of (15)N(15)N from [(15)N]NO(3)(-) in addition to (15)N(15)NO with concomitant cell growth. Prior to the production of N(2) and N(2)O, NO(3)(-) was rapidly reduced to nitrite (NO(2)(-)) accompanied by distinct cell growth, showing that the actinomycete strain is a facultative anaerobe that depends on denitrification and nitrate respiration for anoxic growth. The cell-free activities of denitrifying enzymes could be reconstituted, supporting the notion that the (15)N(15)N and (15)N(15)NO species are produced by denitrification from NO(3)(-) via NO(2)(-). We therefore demonstrated a unique system in an actinomycete that produces gaseous nitrogen (N(2) and N(2)O) through both denitrification and codenitrification. The predominance of codenitrification over denitrification along with oxygen tolerance is the key feature of nitrate metabolism in this actinomycete.


Acta Crystallographica Section F-structural Biology and Crystallization Communications | 2007

Structure of 1-deoxy-D-xylulose 5-phosphate reductoisomerase in a quaternary complex with a magnesium ion, NADPH and the antimalarial drug fosmidomycin

Shunsuke Yajima; Kodai Hara; Daisuke Iino; Yasuyuki Sasaki; Tomohisa Kuzuyama; Kanju Ohsawa; Haruo Seto

The crystal structure of 1-deoxy-D-xylulose 5-phosphate reductoisomerase (DXR) from Escherichia coli complexed with Mg(2+), NADPH and fosmidomycin was solved at 2.2 A resolution. DXR is the key enzyme in the 2-C-methyl-D-erythritol 4-phosphate pathway and is an effective target of antimalarial drugs such as fosmidomycin. In the crystal structure, electron density for the flexible loop covering the active site was clearly observed, indicating the well ordered conformation of DXR upon substrate binding. On the other hand, no electron density was observed for the nicotinamide-ribose portion of NADPH and the position of Asp149 anchoring Mg(2+) was shifted by NADPH in the active site.


Plant Physiology | 2017

Regulation of Strigolactone Biosynthesis by Gibberellin Signaling

Shinsaku Ito; Daichi Yamagami; Mikihisa Umehara; Atsushi Hanada; Satoko Yoshida; Yasuyuki Sasaki; Shunsuke Yajima; Junko Kyozuka; Miyako Ueguchi-Tanaka; Makoto Matsuoka; Ken Shirasu; Shinjiro Yamaguchi; Tadao Asami

GA regulates SL biosynthesis through the GA receptor GID1 and F-box protein GID2. Strigolactones (SLs) are a class of plant hormones that regulate diverse physiological processes, including shoot branching and root development. They also act as rhizosphere signaling molecules to stimulate the germination of root parasitic weeds and the branching of arbuscular mycorrhizal fungi. Although various types of cross talk between SLs and other hormones have been reported in physiological analyses, the cross talk between gibberellin (GA) and SLs is poorly understood. We screened for chemicals that regulate the level of SLs in rice (Oryza sativa) and identified GA as, to our knowledge, a novel SL-regulating molecule. The regulation of SL biosynthesis by GA is dependent on the GA receptor GID1 and F-box protein GID2. GA treatment also reduced the infection of rice plants by the parasitic plant witchers weed (Striga hermonthica). These data not only demonstrate, to our knowledge, the novel plant hormone cross talk between SL and GA, but also suggest that GA can be used to control parasitic weed infections.


Journal of Structural Biology | 2010

Crystal structure of 1-deoxy-d-xylulose 5-phosphate reductoisomerase from the hyperthermophile Thermotoga maritima for insights into the coordination of conformational changes and an inhibitor binding.

Mihoko Takenoya; Akashi Ohtaki; Keiichi Noguchi; Kiwamu Endo; Yasuyuki Sasaki; Kanju Ohsawa; Shunsuke Yajima; Masafumi Yohda

Isopentenyl diphosphate is a precursor of various isoprenoids and is produced by the 2-C-methyl-d-erythritol 4-phosphate (MEP) pathway in plastids of plants, protozoa and many eubacteria. A key enzyme in the MEP pathway, 1-deoxy-d-xylulose 5-phosphate reductoisomerase (DXR), has been shown to be the target of fosmidomycin, which works as an antimalarial, antibacterial and herbicidal compound. In this paper, we report studies of kinetics and the crystal structures of the thermostable DXR from the hyperthermophile Thermotoga maritima. Unlike the mesophilic DXRs, Thermotoga DXR (tDXR) showed activity only with Mg(2+) at its growth temperature. We solved the crystal structures of tDXR with and without fosmidomycin. The structure without fosmidomycin but unexpectedly bound with 2-methyl-2,4-pentanediol (MPD), revealing a new extra space available for potential drug design. This structure adopted the closed form by rigid domain rotation but without the flexible loop over the active site, which was considered as a novel conformation. Further, the conserved Asp residue responsible for cation binding seemed to play an important role in adjusting the position of fosmidomycin. Taken together, our kinetic and the crystal structures illustrate the binding mode of fosmidomycin that leads to its slow, tight binding according to the conformational changes of DXR.


Bioorganic & Medicinal Chemistry Letters | 2014

Antifungal activity of alkyl gallates against plant pathogenic fungi.

Shinsaku Ito; Yasutaka Nakagawa; Satoru Yazawa; Yasuyuki Sasaki; Shunsuke Yajima

The antifungal activity of alkyl gallates against plant pathogenic fungi was evaluated. All of the fungi tested in this study were susceptible to some alkyl gallates, and the effect of linear alkyl gallates against plant pathogenic fungi was similar to the previously reported effects against Gram-negative and Gram-positive bacteria. We found that branched alkyl gallates showed stronger activity than did linear alkyl gallates with similar logP values. In addition, the antifungal activity of alkyl gallates was correlated with gallate-induced inhibition of the activity of mitochondrial complex II. The antifungal activity of alkyl gallates likely originates, at least in part, from their ability to inhibit the membrane respiratory chain.


Scientific Reports | 2016

Nitrogen oxide cycle regulates nitric oxide levels and bacterial cell signaling

Yasuyuki Sasaki; Haruka Oguchi; Takuya Kobayashi; Shinichiro Kusama; Ryo Sugiura; Kenta Moriya; Takuya Hirata; Yuriya Yukioka; Naoki Takaya; Shunsuke Yajima; Shinsaku Ito; Kiyoshi Okada; Kanju Ohsawa; Haruo Ikeda; Hideaki Takano; Kenji Ueda; Hirofumi Shoun

Nitric oxide (NO) signaling controls various metabolic pathways in bacteria and higher eukaryotes. Cellular enzymes synthesize and detoxify NO; however, a mechanism that controls its cellular homeostasis has not been identified. Here, we found a nitrogen oxide cycle involving nitrate reductase (Nar) and the NO dioxygenase flavohemoglobin (Fhb), that facilitate inter-conversion of nitrate, nitrite, and NO in the actinobacterium Streptomyces coelicolor. This cycle regulates cellular NO levels, bacterial antibiotic production, and morphological differentiation. NO down-regulates Nar and up-regulates Fhb gene expression via the NO-dependent transcriptional factors DevSR and NsrR, respectively, which are involved in the auto-regulation mechanism of intracellular NO levels. Nitrite generated by the NO cycles induces gene expression in neighboring cells, indicating an additional role of the cycle as a producer of a transmittable inter-cellular communication molecule.


Plant Signaling & Behavior | 2016

Effects of strigolactone signaling on Arabidopsis growth under nitrogen deficient stress condition

Shinsaku Ito; Ken Ito; Naoko Abeta; Ryo Takahashi; Yasuyuki Sasaki; Shunsuke Yajima

ABSTRACT Strigolactones (SLs) are a group of terpenoid lactones found in plants that regulate diverse developmental phenomena. SLs are thought to be involved in the maintenance of phosphate homeostasis. In addition, SL signaling is required for the regulation of shoot branching by nitrogen supply in Arabidopsis. In this study, we evaluated the effects of SLs on nitrogen deficient-inducing phenomena (leaf senescence and reduction of plant weight) in Arabidopsis. SL-biosynthesis (max1-1) and SL-insensitive (atd14-1) mutants showed altered responses to nitrogen deficient in comparison with wild-type (WT) plants. Nitrogen deficient conditions led to alterations in the expression levels of SL biosynthesis genes (MAX3 and MAX4). These results indicate that SLs could be key mediators of plant growth response to nitrogen supply.


Bioorganic & Medicinal Chemistry Letters | 2015

Effects of alkyl parabens on plant pathogenic fungi.

Shinsaku Ito; Satoru Yazawa; Yasutaka Nakagawa; Yasuyuki Sasaki; Shunsuke Yajima

Alkyl parabens are used as antimicrobial preservatives in cosmetics, food, and pharmaceutical products. However, the mode of action of these chemicals has not been assessed thoroughly. In this study, we determined the effects of alkyl parabens on plant pathogenic fungi. All the fungi tested, were susceptible to parabens. The effect of linear alkyl parabens on plant pathogenic fungi was related to the length of the alkyl chain. In addition, the antifungal activity was correlated with the paraben-induced inhibition of oxygen consumption. The antifungal activity of linear alkyl parabens likely originates, at least in part, from their ability to inhibit the membrane respiratory chain, especially mitochondrial complex II. Additionally, we determined that some alkyl parabens inhibit Alternaria brassicicola infection of cabbage.


Journal of Structural Biology | 2013

Crystal structures of the ternary complex of APH(4)-Ia/Hph with hygromycin B and an ATP analog using a thermostable mutant.

Daisuke Iino; Yasuaki Takakura; Kazuhiro Fukano; Yasuyuki Sasaki; Takayuki Hoshino; Kanju Ohsawa; Akira Nakamura; Shunsuke Yajima

Aminoglycoside 4-phosphotransferase-Ia (APH(4)-Ia)/Hygromycin B phosphotransferase (Hph) inactivates the aminoglycoside antibiotic hygromycin B (hygB) via phosphorylation. The crystal structure of the binary complex of APH(4)-Ia with hygB was recently reported. To characterize substrate recognition by the enzyme, we determined the crystal structure of the ternary complex of non-hydrolyzable ATP analog AMP-PNP and hygB with wild-type, thermostable Hph mutant Hph5, and apo-mutant enzyme forms. The comparison between the ternary complex and apo structures revealed that Hph undergoes domain movement upon binding of AMP-PNP and hygB. This was about half amount of the case of APH(9)-Ia. We also determined the crystal structures of mutants in which the conserved, catalytically important residues Asp198 and Asn203, and the non-conserved Asn202, were converted to Ala, revealing the importance of Asn202 for catalysis. Hph5 contains five amino acid substitutions that alter its thermostability by 16°C; its structure revealed that 4/5 mutations in Hph5 are located in the hydrophobic core and appear to increase thermostability by strengthening hydrophobic interactions.


Journal of Bacteriology | 2012

Group X Aldehyde Dehydrogenases of Pseudomonas aeruginosa PAO1 Degrade Hydrazones

Kosuke Taniyama; Hideomi Itoh; Atsushi Takuwa; Yasuyuki Sasaki; Shunsuke Yajima; Masanori Toyofuku; Nobuhiko Nomura; Naoki Takaya

Hydrazones are natural and synthetic compounds containing a C=N-N moiety. Here we found that the opportunistic pathogen Pseudomonas aeruginosa PAO1 produced NAD(+)- or NADP(+)-dependent hydrazone dehydrogenase (HDH), which converts hydrazones to the corresponding hydrazides and acids rather than to the simple hydrolytic product aldehydes. Gene cloning indicated that the HDH is part of the group X aldehyde dehydrogenase (ALDH) family, which is distributed among bacteria, although the physiological roles of the ALDH family remain unknown. The PAO1 strain upregulated HDH in the presence of the hydrazone adipic acid bis(ethylidene hydrazide) (AEH). Gene disruption of the HDH-encoding hdhA (PA4022) decreased growth rates in culture medium containing AEH as the sole carbon source, and this effect was more obvious in the double gene disruption of hdhA and its orthologous exaC (PA1984), indicating that these genes are responsible for hydrazone utilization. Recombinant proteins of group X ALDHs from Escherichia coli, Paracoccus denitrificans, and Ochrobactrum anthropi also acted as HDHs in that they produced HDH activity in the cells and degraded hydrazones. These findings indicated the physiological roles of group X ALDHs in bacteria and showed that they comprise a distinct ALDH subfamily.

Collaboration


Dive into the Yasuyuki Sasaki's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Shinsaku Ito

Tokyo University of Agriculture

View shared research outputs
Top Co-Authors

Avatar

Kanju Ohsawa

Tokyo University of Agriculture

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Daisuke Iino

Tokyo University of Agriculture

View shared research outputs
Top Co-Authors

Avatar

Tomonori Akiyama

Tokyo University of Agriculture

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Haruka Oguchi

Tokyo University of Agriculture

View shared research outputs
Researchain Logo
Decentralizing Knowledge