Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yauhen Yu. Karabach is active.

Publication


Featured researches published by Yauhen Yu. Karabach.


Inorganic Chemistry | 2011

Ortho-Hydroxyphenylhydrazo-β-Diketones: Tautomery, Coordination Ability, and Catalytic Activity of Their Copper(II) Complexes toward Oxidation of Cyclohexane and Benzylic Alcohols

Maximilian N. Kopylovich; Kamran T. Mahmudov; M. Fátima C. Guedes da Silva; Paweł J. Figiel; Yauhen Yu. Karabach; Maxim L. Kuznetsov; Konstantin V. Luzyanin; Armando J. L. Pombeiro

New hydrazone o-HO-phenylhydrazo-β-diketones (OHADB), R(1)NHN═CR(2)R(3) [R(1) = HO-2-C(6)H(4), R(2) = R(3) = COMe (H(2)L(1), 1), R(2)R(3) = COCH(2)C(Me)(2)CH(2)CO (H(2)L(2), 2), R(2) = COMe, R(3) = COOEt (H(2)L(4), 4); R(1) = HO-2-O(2)N-4-C(6)H(3), R(2)R(3) = COCH(2)C(Me)(2)CH(2)CO (H(2)L(3), 3), R(2) = COMe, R(3) = COOEt (H(2)L(5), 5), R(2)R(3) = COMe (H(2)L(6), 6A)], and their Cu(II) complexes [Cu(2)(CH(3)OH)(2)(μ-L(1))(2)] 7, [Cu(2)(H(2)O)(2)(μ-L(2))(2)] 8, [Cu(H(2)O)(L(3))] 9, [Cu(2)(μ-L(4))(2)](n) 10, [Cu(H(2)O)(L(5))] 11, [Cu(2)(H(2)O)(2)(μ-L(6))(2)] 12A and [Cu(H(2)O)(2)(L(6))] 12B were synthesized and fully characterized, namely, by X-ray analysis (4, 5, 7-12B). Reaction of 6A, Cu(NO(3))(2) and ethylenediamine (en) leads, via Schiff-base condensation, to [Cu{H(2)NCH(2)CH(2)N═C(Me)C(COMe)═NNC(6)H(3)-2-O-4-NO(2)}] (13), and reactions of 12A and 12B with en give the Schiff-base polymer [Cu{H(2)NCH(2)CH(2)N═C(Me)C(COMe)═NNC(6)H(3)-2-O-4-NO(2)}](n) 14. The dependence of the OHADB tautomeric equilibria on temperature, electronic properties of functional groups, and solvent polarity was studied. The OHADB from unsymmetrical β-diketones exist in solution as a mixture of enol-azo and hydrazo tautomeric forms, while in the solid state all the free and coordinated OHADB crystallize in the hydrazo form. The relative stabilities of various tautomers were studied by density functional theory (DFT). 7-14 show catalytic activities for peroxidative oxidation (in MeCN/H(2)O) of cyclohexane to cyclohexanol and cyclohexanone, for selective aerobic oxidation of benzyl alcohols to benzaldehydes in aq. solution, mediated by TEMPO radical, under mild conditions and for the MW-assisted solvent-free synthesis of ketones from secondary alcohols with tert-butylhydroperoxide as oxidant.


Journal of Inorganic Biochemistry | 2008

Copper(II) coordination polymers derived from triethanolamine and pyromellitic acid for bioinspired mild peroxidative oxidation of cyclohexane.

Yauhen Yu. Karabach; Alexander M. Kirillov; Matti Haukka; Maximilian N. Kopylovich; Armando J. L. Pombeiro

The new inorganic 1D coordination polymer [Cu2(H3tea)2(mu4-pma)]n has been prepared, via self-assembly in aqueous medium, from copper(II) nitrate, triethanolamine (H3tea), pyromellitic acid (H4pma) and lithium hydroxide, and characterized by IR spectroscopy, elemental and single-crystal X-ray diffraction analyses. This compound and the related 2D polymer [Cu2(mu-H2tea)(2){mu3-Na2(H2O)4}(mu6-pma)]n.10nH2O are shown to mimic the alkane partial oxidation activity of the multicopper particulate methane monooxygenase, acting as catalysts precursors for the peroxidative oxidation of cyclohexane into cyclohexanol and cyclohexanone, by hydrogen peroxide (as green oxidant) and at room temperature in acidic MeCN/H2O medium. An overall yield (based on cyclohexane) of 29% has been achieved.


Dalton Transactions | 2009

New coordination polymers based on the triangular [Cu3(μ3-OH)(μ-pz)3]2+ unit and unsaturated carboxylates

Simone Contaldi; Corrado Di Nicola; Federica Garau; Yauhen Yu. Karabach; Luísa Margarida D. R. S. Martins; Magda Monari; Luciano Pandolfo; Claudio Pettinari; Armando J. L. Pombeiro

By reacting copper(II) acrylate with pyrazole (Hpz), two trinuclear copper derivatives [Cu3(mu3-OH)(mu-pz)3(CH2CHCOO)2(H2O)2(Hpz)], 1, and [Cu3(mu3-OH)(mu-pz)3(CH2CHCOO)2(CH3OH)], 2, are obtained, in water and methanol respectively, while copper(II) methacrylate affords [Cu3(mu3-OH)(mu-pz)3(CH2C(CH3)COO)2], 3, independently from the solvent used. In 1 and 2 two triangular trinuclear units are connected through acrylate bridges forming hexanuclear clusters that, in the case of 2 are further connected through double syn-syn carboxylate bridges, generating a 1-D coordination polymer. In the case of 3 a different 1-D coordination polymer is obtained by alternating syn-syn and syn-anti double carboxylate bridges connecting the trinuclear clusters. In all cases H-bonds contribute both to the stabilization of these arrangements and to the formation of more extended supramolecular networks. Compounds 1-3 are valuable catalysts in the peroxidative oxidation with aqueous H2O2, in MeCN at 25 degrees C, of cycloalkanes (i.e. cyclohexane and cyclopentane) to the corresponding ketones and alcohols (overall yield up to 36%, TON = 36), following a radical mechanism as shown by radical trap experiments, and the effects of various factors are studied. Electrochemical experiments show that the copper(II) centres are reduced to copper(I) and copper(0).


Inorganic Chemistry | 2010

Self-Assembled 3D Heterometallic CuII/FeII Coordination Polymers with Octahedral Net Skeletons: Structural Features, Molecular Magnetism, Thermal and Oxidation Catalytic Properties

Yauhen Yu. Karabach; M. Fátima C. Guedes da Silva; Maximilian N. Kopylovich; Beatriz Gil-Hernández; Joaquín Sanchiz; Alexander M. Kirillov; Armando J. L. Pombeiro

The new three-dimensional (3D) heterometallic Cu(II)/Fe(II) coordination polymers [Cu(6)(H(2)tea)(6)Fe(CN)(6)](n)(NO(3))(2n)·6nH(2)O (1) and [Cu(6)(Hmdea)(6)Fe(CN)(6)](n)(NO(3))(2n)·7nH(2)O (2) have been easily generated by aqueous-medium self-assembly reactions of copper(II) nitrate with triethanolamine or N-methyldiethanolamine (H(3)tea or H(2)mdea, respectively), in the presence of potassium ferricyanide and sodium hydroxide. They have been isolated as air-stable crystalline solids and fully characterized including by single-crystal X-ray diffraction analyses. The latter reveal the formation of 3D metal-organic frameworks that are constructed from the [Cu(2)(μ-H(2)tea)(2)](2+) or [Cu(2)(μ-Hmdea)(2)](2+) nodes and the octahedral [Fe(CN)(6)](4-) linkers, featuring regular (1) or distorted (2) octahedral net skeletons. Upon dehydration, both compounds show reversible escape and binding processes toward water or methanol molecules. Magnetic susceptibility measurements of 1 and 2 reveal strong antiferromagnetic [J = -199(1) cm(-1)] or strong ferromagnetic [J = +153(1) cm(-1)] couplings between the copper(II) ions through the μ-O-alkoxo atoms in 1 or 2, respectively. The differences in magnetic behavior are explained in terms of the dependence of the magnetic coupling constant on the Cu-O-Cu bridging angle. Compounds 1 and 2 also act as efficient catalyst precursors for the mild oxidation of cyclohexane by aqueous hydrogen peroxide to cyclohexanol and cyclohexanone (homogeneous catalytic system), leading to maximum total yields (based on cyclohexane) and turnover numbers (TONs) up to about 22% and 470, respectively.


Chemistry: A European Journal | 2012

Alkoxy‐1,3,5‐triazapentadien(e/ato) Copper(II) Complexes: Template Formation and Applications for the Preparation of Pyrimidines and as Catalysts for Oxidation of Alcohols to Carbonyl Products

Maximilian N. Kopylovich; Yauhen Yu. Karabach; M. Fátima C. Guedes da Silva; Paweł J. Figiel; Jamal Lasri; Armando J. L. Pombeiro

Template combination of copper acetate (Cu(AcO)(2)⋅H(2)O) with sodium dicyanamide (NaN(C≡N)(2), 2 equiv) or cyanoguanidine (N≡CNHC(=NH)NH(2), 2 equiv) and an alcohol ROH (used also as solvent) leads to the neutral copper(II)-(2,4-alkoxy-1,3,5-triazapentadienato) complexes [Cu{NH=C(OR)NC(OR)=NH}(2)] (R = Me (1), Et (2), nPr (3), iPr (4), CH(2)CH(2)OCH(3) (5)) or cationic copper(II)-(2-alkoxy-4-amino-1,3,5-triazapentadiene) complexes [Cu{NH=C(OR)NHC(NH(2))=NH}(2)](AcO)(2) (R = Me (6), Et (7), nPr (8), nBu (9), CH(2)CH(2)OCH(3) (10)), respectively. Several intermediates of this reaction were isolated and a pathway was proposed. The deprotonation of 6-10 with NaOH allows their transformation to the corresponding neutral triazapentadienates [Cu{NH=C(OR)NC(NH(2))=NH}(2)] 11-15. Reaction of 11, 12 or 15 with acetyl acetone (MeC(=O)CH(2)C(=O)Me) leads to liberation of the corresponding pyrimidines NC(Me)CHC(Me)NCNHC(=NH)OR, whereas the same treatment of the cationic complexes 6, 7 or 10 allows the corresponding metal-free triazapentadiene salts {NH(2)C(OR)=NC(NH(2))=NH(2)}(OAc) to be isolated. The alkoxy-1,3,5-triazapentadiene/ato copper(II) complexes have been applied as efficient catalysts for the TEMPO radical-mediated mild aerobic oxidation of alcohols to the corresponding aldehydes (molar yields of aldehydes of up to 100 % with >99 % selectivity) and for the solvent-free microwave-assisted synthesis of ketones from secondary alcohols with tert-butylhydroperoxide as oxidant (yields of up to 97 %, turnover numbers of up to 485 and turnover frequencies of up to 1170 h(-1)).


RSC Advances | 2016

Nickel (ii)-2-amino-4-alkoxy-1,3,5-triazapentadienate complexes as catalysts for heck and henry reactions

Ana P. C. Ribeiro; Yauhen Yu. Karabach; Luísa Margarida D. R. S. Martins; Abdallah G. Mahmoud; M. Fátima C. Guedes da Silva; Armando J. L. Pombeiro

Nickel(II)-triazapentadienate complexes, [Ni(tap)2], are synthesized and found to act as catalysts in the Heck reaction of deactivated aryl halides. The use of room-temperature ionic liquids instead of organic solvents allows easy separation of the catalyst from the products and substrates. The synthesized complexes also catalyse the Henry reaction of benzaldehydes with nitroethane, at 25 °C, leading to the corresponding nitroalkanols with diastereoselectivity in favour of the anti isomer.


Inorganic Chemistry | 2007

Supramolecular assemblies of trinuclear triangular copper(II) secondary building units through hydrogen bonds. Generation of different metal-organic frameworks, valuable catalysts for peroxidative oxidation of alkanes.

Di Nicola C; Yauhen Yu. Karabach; Alexander M. Kirillov; Magda Monari; Luciano Pandolfo; Claudio Pettinari; Armando J. L. Pombeiro


Crystal Growth & Design | 2006

An Aqua-Soluble Copper(II)−Sodium Two-Dimensional Coordination Polymer with Intercalated Infinite Chains of Decameric Water Clusters

Yauhen Yu. Karabach; Alexander M. Kirillov; M. Fátima C. Guedes da Silva; Maximilian N. Kopylovich; Armando J. L. Pombeiro


Inorganic Chemistry | 2008

Self-assembled copper(II) coordination polymers derived from aminopolyalcohols and benzenepolycarboxylates: structural and magnetic properties.

Alexander M. Kirillov; Yauhen Yu. Karabach; Matti Haukka; M. Fátima C. Guedes da Silva; Joaquín Sanchiz; and Maximilian N. Kopylovich; Armando J. L. Pombeiro


Journal of Molecular Catalysis A-chemical | 2009

Mild aerobic oxidation of benzyl alcohols to benzaldehydes in water catalyzed by aqua-soluble multicopper(II) triethanolaminate compounds ☆

Paweł J. Figiel; Alexander M. Kirillov; Yauhen Yu. Karabach; Maximilian N. Kopylovich; Armando J. L. Pombeiro

Collaboration


Dive into the Yauhen Yu. Karabach's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Matti Haukka

University of Jyväskylä

View shared research outputs
Top Co-Authors

Avatar

Paweł J. Figiel

Instituto Superior Técnico

View shared research outputs
Top Co-Authors

Avatar

Kamran T. Mahmudov

Instituto Superior Técnico

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge