Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yayoi Kimura is active.

Publication


Featured researches published by Yayoi Kimura.


Nature | 2015

Receptor-mediated selective autophagy degrades the endoplasmic reticulum and the nucleus

Keisuke Mochida; Yu Oikawa; Yayoi Kimura; Hiromi Kirisako; Hisashi Hirano; Yoshinori Ohsumi; Hitoshi Nakatogawa

Macroautophagy (hereafter referred to as autophagy) degrades various intracellular constituents to regulate a wide range of cellular functions, and is also closely linked to several human diseases. In selective autophagy, receptor proteins recognize degradation targets and direct their sequestration by double-membrane vesicles called autophagosomes, which transport them into lysosomes or vacuoles. Although recent studies have shown that selective autophagy is involved in quality/quantity control of some organelles, including mitochondria and peroxisomes, it remains unclear how extensively it contributes to cellular organelle homeostasis. Here we describe selective autophagy of the endoplasmic reticulum (ER) and nucleus in the yeast Saccharomyces cerevisiae. We identify two novel proteins, Atg39 and Atg40, as receptors specific to these pathways. Atg39 localizes to the perinuclear ER (or the nuclear envelope) and induces autophagic sequestration of part of the nucleus. Atg40 is enriched in the cortical and cytoplasmic ER, and loads these ER subdomains into autophagosomes. Atg39-dependent autophagy of the perinuclear ER/nucleus is required for cell survival under nitrogen-deprivation conditions. Atg40 is probably the functional counterpart of FAM134B, an autophagy receptor for the ER in mammals that has been implicated in sensory neuropathy. Our results provide fundamental insight into the pathophysiological roles and mechanisms of ‘ER-phagy’ and ‘nucleophagy’ in other organisms.


Nature Structural & Molecular Biology | 2014

Structural basis of starvation-induced assembly of the autophagy initiation complex

Yuko Fujioka; Sho W. Suzuki; Hayashi Yamamoto; Chika Kondo-Kakuta; Yayoi Kimura; Hisashi Hirano; Rinji Akada; Fuyuhiko Inagaki; Yoshinori Ohsumi; Nobuo N. Noda

Assembly of the preautophagosomal structure (PAS) is essential for autophagy initiation in yeast. Starvation-induced dephosphorylation of Atg13 is required for the formation of the Atg1–Atg13–Atg17–Atg29–Atg31 complex (Atg1 complex), a prerequisite for PAS assembly. However, molecular details underlying these events have not been established. Here we studied the interactions of yeast Atg13 with Atg1 and Atg17 by X-ray crystallography. Atg13 binds tandem microtubule interacting and transport domains in Atg1, using an elongated helix-loop-helix region. Atg13 also binds Atg17, using a short region, thereby bridging Atg1 and Atg17 and leading to Atg1-complex formation. Dephosphorylation of specific serines in Atg13 enhanced its interaction with not only Atg1 but also Atg17. These observations update the autophagy-initiation model as follows: upon starvation, dephosphorylated Atg13 binds both Atg1 and Atg17, and this promotes PAS assembly and autophagy progression.


Archives of Biochemistry and Biophysics | 2003

N-Terminal modifications of the 19S regulatory particle subunits of the yeast proteasome

Yayoi Kimura; Yasushi Saeki; Hideyoshi Yokosawa; Bogdan Polevoda; Fred Sherman; Hisashi Hirano

The yeast (Saccharomyces cerevisiae) contains three N-acetyltransferases, NatA, NatB, and NatC, each of which acetylates proteins with different N-terminal regions. The 19S regulatory particle of the yeast 26S proteasome consists of 17 subunits, 12 of which are N-terminally modified. By using nat1, nat3, and mak3 deletion mutants, we found that 8 subunits, Rpt4, Rpt5, Rpt6, Rpn2, Rpn3, Rpn5, Rpn6, and Rpn8, were NatA substrates, and that 2 subunits, Rpt3 and Rpn11, were NatB substrates. Mass spectrometric analysis revealed that the initiator Met of Rpt2 precursor polypeptide was processed and a part of the mature Rpt2 was N-myristoylated. The crude extracts from the normal strain and the nat1 deletion mutant were similar in chymotrypsin-like activity in the presence of ATP in vitro and in the accumulation level of the 26S proteasome. These characteristics were different from those of the 20S proteasome: the chymotrypsin-like activity and accumulation level of 20S proteasome were appreciably higher from the nat1 deletion mutant than from the normal strain.


Bioinformatics | 2007

Construction of an open-access database that integrates cross-reference information from the transcriptome and proteome of immune cells

Atsushi Hijikata; Hiroshi Kitamura; Yayoi Kimura; Ryo Yokoyama; Yuichi Aiba; Yan-Yuan Bao; Shigeharu Fujita; Koji Hase; Shohei Hori; Yasuyuki Ishii; Osami Kanagawa; Hiroshi Kawamoto; Kazuya Kawano; Haruhiko Koseki; Masato Kubo; Ai Kurita-Miki; Tomohiro Kurosaki; Kyoko Masuda; Mitsumasa Nakata; Keisuke Oboki; Hiroshi Ohno; Mariko Okamoto; Yoshimichi Okayama; Jiyang O-Wang; Hirohisa Saito; Takashi Saito; Machie Sakuma; Katsuaki Sato; Kaori Sato; Ken-ichiro Seino

MOTIVATION Although a huge amount of mammalian genomic data does become publicly available, there are still hurdles for biologists to overcome before such data can be fully exploited. One of the challenges for gaining biological insight from genomic data has been the inability to cross-reference transcriptomic and proteomic data using a single informational platform. To address this, we constructed an open-access database that enabled us to cross-reference transcriptomic and proteomic data obtained from immune cells. RESULTS The database, named RefDIC (Reference genomics Database of Immune Cells), currently contains: (i) quantitative mRNA profiles for human and mouse immune cells/tissues obtained using Affymetrix GeneChip technology; (ii) quantitative protein profiles for mouse immune cells obtained using two-dimensional gel electrophoresis (2-DE) followed by image analysis and mass spectrometry and (iii) various visualization tools to cross-reference the mRNA and protein profiles of immune cells. RefDIC is the first open-access database for immunogenomics and serves as an important information-sharing platform, enabling a focused genomic approach in immunology. AVAILABILITY All raw data and information can be accessed from http://refdic.rcai.riken.jp/. The microarray data is also available at http://cibex.nig.ac.jp/ under CIBEX accession no. CBX19, and http://www.ebi.ac.uk/pride/ under PRIDE accession numbers 2354-2378 and 2414.


Proceedings of the National Academy of Sciences of the United States of America | 2015

Atg13 HORMA domain recruits Atg9 vesicles during autophagosome formation

Sho W. Suzuki; Hayashi Yamamoto; Yu Oikawa; Chika Kondo-Kakuta; Yayoi Kimura; Hisashi Hirano; Yoshinori Ohsumi

Significance Autophagy is a highly conserved degradative process in eukaryotes. In response to starvation, a number of autophagosome-related (Atg) proteins are recruited, and these proteins govern the process of autophagosome formation. Atg9 vesicles are thought to play an essential role in the nucleation step, but it remains unclear how Atg9 vesicles are localized to the site of autophagosome formation. In this study, we found that Atg9 interacts with the HORMA (from Hop1, Rev7, and Mad2) domain of Atg13. Atg13 mutants lacking the Atg9-binding region fail to recruit Atg9 vesicles to the site of autophagosome formation and exhibit severe defects in autophagy. Thus, the HORMA domain of Atg13 facilitates recruitment of Atg9 vesicles during autophagosome formation. Our studies provide a molecular insight into how Atg9 vesicles become part of the autophagosomal membrane. During autophagosome formation, autophagosome-related (Atg) proteins are recruited hierarchically to organize the preautophagosomal structure (PAS). Atg13, which plays a central role in the initial step of PAS formation, consists of two structural regions, the N-terminal HORMA (from Hop1, Rev7, and Mad2) domain and the C-terminal disordered region. The C-terminal disordered region of Atg13, which contains the binding sites for Atg1 and Atg17, is essential for the initiation step in which the Atg1 complex is formed to serve as a scaffold for the PAS. The N-terminal HORMA domain of Atg13 is also essential for autophagy, but its molecular function has not been established. In this study, we searched for interaction partners of the Atg13 HORMA domain and found that it binds Atg9, a multispanning membrane protein that exists on specific cytoplasmic vesicles (Atg9 vesicles). After the Atg1 complex is formed, Atg9 vesicles are recruited to the PAS and become part of the autophagosomal membrane. HORMA domain mutants, which are unable to interact with Atg9, impaired the PAS localization of Atg9 vesicles and exhibited severe defects in starvation-induced autophagy. Thus, Atg9 vesicles are recruited to the PAS via the interaction with the Atg13 HORMA domain. Based on these findings, we propose that the two distinct regions of Atg13 play crucial roles in distinct steps of autophagosome formation: In the first step, Atg13 forms a scaffold for the PAS via its C-terminal disordered region, and subsequently it recruits Atg9 vesicles via its N-terminal HORMA domain.


Journal of Virology | 2014

Involvement of Hepatitis C Virus NS5A Hyperphosphorylation Mediated by Casein Kinase I-α in Infectious Virus Production

Takahiro Masaki; Satoko Matsunaga; Hirotaka Takahashi; Kenji Nakashima; Yayoi Kimura; Masahiko Ito; Mami Matsuda; Asako Murayama; Takanobu Kato; Hisashi Hirano; Yaeta Endo; Stanley M. Lemon; Takaji Wakita; Tatsuya Sawasaki; Tetsuro Suzuki

ABSTRACT Nonstructural protein 5A (NS5A) of hepatitis C virus (HCV) possesses multiple functions in the viral life cycle. NS5A is a phosphoprotein that exists in hyperphosphorylated and basally phosphorylated forms. Although the phosphorylation status of NS5A is considered to have a significant impact on its function, the mechanistic details regulating NS5A phosphorylation, as well as its exact roles in the HCV life cycle, are still poorly understood. In this study, we screened 404 human protein kinases via in vitro binding and phosphorylation assays, followed by RNA interference-mediated gene silencing in an HCV cell culture system. Casein kinase I-α (CKI-α) was identified as an NS5A-associated kinase involved in NS5A hyperphosphorylation and infectious virus production. Subcellular fractionation and immunofluorescence confocal microscopy analyses showed that CKI-α-mediated hyperphosphorylation of NS5A contributes to the recruitment of NS5A to low-density membrane structures around lipid droplets (LDs) and facilitates its interaction with core protein and the viral assembly. Phospho-proteomic analysis of NS5A with or without CKI-α depletion identified peptide fragments that corresponded to the region located within the low-complexity sequence I, which is important for CKI-α-mediated NS5A hyperphosphorylation. This region contains eight serine residues that are highly conserved among HCV isolates, and subsequent mutagenesis analysis demonstrated that serine residues at amino acids 225 and 232 in NS5A (genotype 2a) may be involved in NS5A hyperphosphorylation and hyperphosphorylation-dependent regulation of virion production. These findings provide insight concerning the functional role of NS5A phosphorylation as a regulatory switch that modulates its multiple functions in the HCV life cycle. IMPORTANCE Mechanisms regulating NS5A phosphorylation and its exact function in the HCV life cycle have not been clearly defined. By using a high-throughput screening system targeting host protein kinases, we identified CKI-α as an NS5A-associated kinase involved in NS5A hyperphosphorylation and the production of infectious virus. Our results suggest that the impact of CKI-α in the HCV life cycle is more profound on virion assembly than viral replication via mediation of NS5A hyperphosphorylation. CKI-α-dependent hyperphosphorylation of NS5A plays a role in recruiting NS5A to low-density membrane structures around LDs and facilitating its interaction with the core for new virus particle formation. By using proteomic approach, we identified the region within the low-complexity sequence I of NS5A that is involved in NS5A hyperphosphorylation and hyperphosphorylation-dependent regulation of infectious virus production. These findings will provide novel mechanistic insights into the roles of NS5A-associated kinases and NS5A phosphorylation in the HCV life cycle.


Proteomics | 2010

Co- and post-translational modifications of the 26S proteasome in yeast

Julia Kikuchi; Yuko Iwafune; Tomoko Akiyama; Akiko Okayama; Hiroki Nakamura; Noriaki Arakawa; Yayoi Kimura; Hisashi Hirano

The yeast (Saccharomyces cerevisiae) 26S proteasome consists of the 19S regulatory particle (19S RP) and 20S proteasome subunits. We detected comprehensively co‐ and post‐translational modifications of these subunits using proteomic techniques. First, using MS/MS, we investigated the N‐terminal modifications of three 19S RP subunits, Rpt1, Rpn13, and Rpn15, which had been unclear, and found that the N‐terminus of Rpt1 is not modified, whereas that of Rpn13 and Rpn15 is acetylated. Second, we identified a total of 33 Ser/Thr phosphorylation sites in 15 subunits of the proteasome. The data obtained by us and other groups reveal that the 26S proteasome contains at least 88 phospho‐amino acids including 63 pSer, 23 pThr, and 2 pTyr residues. Dephosphorylation treatment of the 19S RP with λ phosphatase resulted in a 30% decrease in ATPase activity, demonstrating that phosphorylation is involved in the regulation of ATPase activity in the proteasome. Third, we tried to detect glycosylated subunits of the 26S proteasome. However, we identified neither N‐ and O‐linked oligosaccharides nor O‐linked β‐N‐acetylglucosamine in the 19S RP and 20S proteasome subunits. To date, a total of 110 co‐ and post‐translational modifications, including Nα‐acetylation, Nα‐myristoylation, and phosphorylation, in the yeast 26S proteasome have been identified.


Proteomics | 2010

Characterization of multiple alternative forms of heterogeneous nuclear ribonucleoprotein K by phosphate‐affinity electrophoresis

Yayoi Kimura; Kayoko Nagata; Nobutake Suzuki; Ryo Yokoyama; Yuko Yamanaka; Hiroshi Kitamura; Hisashi Hirano; Osamu Ohara

The phosphorylation of heterogeneous nuclear ribonucleoprotein K (hnRNP K) is thought to play an important role in cell regulation and signal transduction. However, the relationship between hnRNP K phosphorylation and cellular events has only been indirectly examined, and the phosphorylated forms of endogenous hnRNP K have not been biochemically characterized in detail. In this study, we extensively examined the phosphorylated forms of endogenous hnRNP K by direct protein–chemical characterization using phosphate‐affinity electrophoresis followed by immunoblotting and MS. Phosphate‐affinity electrophoresis enabled us to sensitively detect and separate the phosphorylated forms of hnRNP K. When we used 2‐DE with phosphate‐affinity SDS‐PAGE in the second dimension, the nuclear fraction contained more than 20 spots of endogenous hnRNP K on the 2‐D map. We determined that the multiple forms of hnRNP K were produced mainly by alternative splicing of the single hnRNP K gene and phosphorylation of Ser116 and/or Ser284. Furthermore, the subcellular localization of these proteins revealed by the 2‐D gel correlated with their phosphorylation states and alternative splicing patterns. The results also indicated that the multiple forms of hnRNP K were differentially modulated in response to external stimulation with bacterial lipopolysaccharide or serum.


Journal of Proteomics | 2011

Nα-Acetylation of yeast ribosomal proteins and its effect on protein synthesis

Masahiro Kamita; Yayoi Kimura; Yoko Ino; Roza Maria Kamp; Bogdan Polevoda; Fred Sherman; Hisashi Hirano

N(α)-Acetyltransferases (NATs) cause the N(α)-acetylation of the majority of eukaryotic proteins during their translation, although the functions of this modification have been largely unexplored. In yeast (Saccharomyces cerevisiae), four NATs have been identified: NatA, NatB, NatC, and NatD. In this study, the N(α)-acetylation status of ribosomal protein was analyzed using NAT mutants combined with two-dimensional difference gel electrophoresis (2D-DIGE) and mass spectrometry (MS). A total of 60 ribosomal proteins were identified, of which 17 were N(α)-acetylated by NatA, and two by NatB. The N(α)-acetylation of two of these, S17 and L23, by NatA was not previously observed. Furthermore, we tested the effect of ribosomal protein N(α)-acetylation on protein synthesis using the purified ribosomes from each NAT mutant. It was found that the protein synthesis activities of ribosomes from NatA and NatB mutants were decreased by 27% and 23%, respectively, as compared to that of the normal strain. Furthermore, we have shown that ribosomal protein N(α)-acetylation by NatA influences translational fidelity in the presence of paromomycin. These results suggest that ribosomal protein N(α)-acetylation is necessary to maintain the ribosomes protein synthesis function.


Physiological Genomics | 2008

Genome-wide identification and characterization of transcripts translationally regulated by bacterial lipopolysaccharide in macrophage-like J774.1 cells

Hiroshi Kitamura; Masatoshi Ito; Tomoko Yuasa; Chisato Kikuguchi; Atsushi Hijikata; Michiyo Takayama; Yayoi Kimura; Ryo Yokoyama; Tomohiro Kaji; Osamu Ohara

Although Escherichia coli LPS is known to elicit various proinflammatory responses in macrophages, its effect on the translational states of transcripts has not yet been explored on a genome-wide scale. To address this, we investigated the mRNA profiles in polysomal and free messenger ribonucleoprotein particle (mRNP) fractions of mouse macrophage-like J774.1 cells, using Affymetrix Mouse Genome 430 2.0 GeneChips. Comparison of the mRNA profiles in total cellular, polysomal, and free mRNP fractions enabled us to identify transcripts that were modulated at the translational level by LPS: among 19,791 transcripts, 115 and 418 were up- and downregulated at 1, 2, or 4 h after LPS stimulation (100 ng/ml) in a translation-dependent manner. Interestingly, gene ontology-based analysis suggested that translation-dependent downregulated genes frequently include those encoding proteins in the mitochondrial respiratory chain. In fact, the mRNA levels of some transcripts for complexes I, IV, and V in the mitochondrial respiratory chain were translationally downregulated, eventually contributing to the decline of their protein levels. Moreover, the amount of metabolically labeled cytochrome oxidase subunit Va in complex IV was decreased without any change of its mRNA level in total cellular fraction after LPS stimulation. Consistently, the total amounts and activities of complexes I and IV were attenuated by LPS stimulation, and the attenuation was independent of nitric oxide. These results demonstrated that translational suppression may play a critical role in the LPS-mediated attenuation of mitochondrial oxidative phosphorylation in a nitric oxide-independent manner in J774.1 cells.

Collaboration


Dive into the Yayoi Kimura's collaboration.

Top Co-Authors

Avatar

Hisashi Hirano

Yokohama City University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yoko Ino

Yokohama City University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Akiko Okayama

Yokohama City University

View shared research outputs
Top Co-Authors

Avatar

Atsushi Hijikata

Nagahama Institute of Bio-Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Ryo Yokoyama

Yokohama City University

View shared research outputs
Top Co-Authors

Avatar

Yohei Miyagi

Yokohama City University

View shared research outputs
Top Co-Authors

Avatar

Akihide Ryo

Yokohama City University

View shared research outputs
Top Co-Authors

Avatar

Ayuko Kimura

Yokohama City University

View shared research outputs
Researchain Logo
Decentralizing Knowledge