Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yee Ling Wu is active.

Publication


Featured researches published by Yee Ling Wu.


American Journal of Human Genetics | 2007

Gene copy-number variation and associated polymorphisms of complement component C4 in human systemic lupus erythematosus (SLE): low copy number is a risk factor for and high copy number is a protective factor against SLE susceptibility in European Americans.

Yan Yang; Erwin K. Chung; Yee Ling Wu; Stephanie L. Savelli; Haikady N. Nagaraja; Bi Zhou; Maddie Hebert; Karla N. Jones; Yaoling Shu; Kathryn J. Kitzmiller; Carol A. Blanchong; Kim L. McBride; Gloria C. Higgins; Robert M. Rennebohm; Robert R. Rice; Kevin V. Hackshaw; Robert Roubey; Jennifer M. Grossman; Betty P. Tsao; Daniel J. Birmingham; Brad H. Rovin; Lee A. Hebert; C. Yung Yu

Interindividual gene copy-number variation (CNV) of complement component C4 and its associated polymorphisms in gene size (long and short) and protein isotypes (C4A and C4B) probably lead to different susceptibilities to autoimmune disease. We investigated the C4 gene CNV in 1,241 European Americans, including patients with systemic lupus erythematosus (SLE), their first-degree relatives, and unrelated healthy subjects, by definitive genotyping and phenotyping techniques. The gene copy number (GCN) varied from 2 to 6 for total C4, from 0 to 5 for C4A, and from 0 to 4 for C4B. Four copies of total C4, two copies of C4A, and two copies of C4B were the most common GCN counts, but each constituted only between one-half and three-quarters of the study populations. Long C4 genes were strongly correlated with C4A (R=0.695; P<.0001). Short C4 genes were correlated with C4B (R=0.437; P<.0001). In comparison with healthy subjects, patients with SLE clearly had the GCN of total C4 and C4A shifting to the lower side. The risk of SLE disease susceptibility significantly increased among subjects with only two copies of total C4 (patients 9.3%; unrelated controls 1.5%; odds ratio [OR] = 6.514; P=.00002) but decreased in those with > or =5 copies of C4 (patients 5.79%; controls 12%; OR=0.466; P=.016). Both zero copies (OR=5.267; P=.001) and one copy (OR=1.613; P=.022) of C4A were risk factors for SLE, whereas > or =3 copies of C4A appeared to be protective (OR=0.574; P=.012). Family-based association tests suggested that a specific haplotype with a single short C4B in tight linkage disequilibrium with the -308A allele of TNFA was more likely to be transmitted to patients with SLE. This work demonstrates how gene CNV and its related polymorphisms are associated with the susceptibility to a human complex disease.


eLife | 2013

DNA deaminases induce break-associated mutation showers with implication of APOBEC3B and 3A in breast cancer kataegis

Benjamin Taylor; Serena Nik-Zainal; Yee Ling Wu; Lucy Stebbings; Keiran Raine; Peter J. Campbell; Cristina Rada; Michael R. Stratton; Michael S. Neuberger

Breast cancer genomes have revealed a novel form of mutation showers (kataegis) in which multiple same-strand substitutions at C:G pairs spaced one to several hundred nucleotides apart are clustered over kilobase-sized regions, often associated with sites of DNA rearrangement. We show kataegis can result from AID/APOBEC-catalysed cytidine deamination in the vicinity of DNA breaks, likely through action on single-stranded DNA exposed during resection. Cancer-like kataegis can be recapitulated by expression of AID/APOBEC family deaminases in yeast where it largely depends on uracil excision, which generates an abasic site for strand breakage. Localized kataegis can also be nucleated by an I-SceI-induced break. Genome-wide patterns of APOBEC3-catalyzed deamination in yeast reveal APOBEC3B and 3A as the deaminases whose mutational signatures are most similar to those of breast cancer kataegic mutations. Together with expression and functional assays, the results implicate APOBEC3B/A in breast cancer hypermutation and give insight into the mechanism of kataegis. DOI: http://dx.doi.org/10.7554/eLife.00534.001


Proceedings of the National Academy of Sciences of the United States of America | 2010

Sex-specific association of X-linked Toll-like receptor 7 (TLR7) with male systemic lupus erythematosus

Nan Shen; Qiong Fu; Yun Deng; Xiaoxia Qian; Jian Zhao; Kenneth M. Kaufman; Yee Ling Wu; C. Yung Yu; Yuanjia Tang; Ji-Yih Chen; Wanling Yang; Maida Wong; Aya Kawasaki; Naoyuki Tsuchiya; Takayuki Sumida; Yasushi Kawaguchi; Hwee Siew Howe; Mo Yin Mok; So-Young Bang; Fei-Lan Liu; Deh-Ming Chang; Yoshinari Takasaki; Hiroshi Hashimoto; John B. Harley; Joel M. Guthridge; Jennifer M. Grossman; Rita M. Cantor; Yeong Wook Song; Sang-Cheol Bae; Shunle Chen

Systemic lupus erythematosus (SLE) is a multisystem, autoimmune disease that predominantly affects women. Previous findings that duplicated Toll-like receptor 7 (Tlr7) promotes lupus-like disease in male BXSB mice prompted us to evaluate TLR7 in human SLE. By using a candidate gene approach, we identified and replicated association of a TLR7 3′UTR SNP, rs3853839 (G/C), with SLE in 9,274 Eastern Asians (Pcombined = 6.5 × 10−10), with a stronger effect in male than female subjects [odds ratio, male vs. female = 2.33 (95% CI = 1.64–3.30) vs. 1.24 (95% CI = 1.14–1.34); P = 4.1 × 10−4]. G-allele carriers had increased TLR7 transcripts and more pronounced IFN signature than C-allele carriers; heterozygotes had 2.7-fold higher transcripts of G-allele than C-allele. These data established a functional polymorphism in type I IFN pathway gene TLR7 predisposing to SLE, especially in Chinese and Japanese male subjects.


PLOS Genetics | 2005

A Dinucleotide Deletion in CD24 Confers Protection against Autoimmune Diseases

Lizhong Wang; Shili Lin; Kottil Rammohan; Zhenqiu Liu; Jin Qing Liu; Runhua Liu; Nikki Guinther; Judy Lima; Qunmin Zhou; Tony Wang; Xincheng Zheng; Daniel J. Birmingham; Brad H. Rovin; Lee A. Hebert; Yee Ling Wu; D. Joanne Lynn; Glenn Cooke; C. Yung Yu; Pan Zheng; Yang Liu

It is generally believed that susceptibility to both organ-specific and systemic autoimmune diseases is under polygenic control. Although multiple genes have been implicated in each type of autoimmune disease, few are known to have a significant impact on both. Here, we investigated the significance of polymorphisms in the human gene CD24 and the susceptibility to multiple sclerosis (MS) and systemic lupus erythematosus (SLE). We used cases/control studies to determine the association between CD24 polymorphism and the risk of MS and SLE. In addition, we also considered transmission disequilibrium tests using family data from two cohorts consisting of a total of 150 pedigrees of MS families and 187 pedigrees of SLE families. Our analyses revealed that a dinucleotide deletion at position 1527∼1528 (P1527del) from the CD24 mRNA translation start site is associated with a significantly reduced risk (odds ratio = 0.54 with 95% confidence interval = 0.34–0.82) and delayed progression (p = 0.0188) of MS. Among the SLE cohort, we found a similar reduction of risk with the same polymorphism (odds ratio = 0.38, confidence interval = 0.22–0.62). More importantly, using 150 pedigrees of MS families from two independent cohorts and the TRANSMIT software, we found that the P1527del allele was preferentially transmitted to unaffected individuals (p = 0.002). Likewise, an analysis of 187 SLE families revealed the dinucleotide-deleted allele was preferentially transmitted to unaffected individuals (p = 0.002). The mRNA levels for the dinucleotide-deletion allele were 2.5-fold less than that of the wild-type allele. The dinucleotide deletion significantly reduced the stability of CD24 mRNA. Our results demonstrate that a destabilizing dinucleotide deletion in the 3′ UTR of CD24 mRNA conveys significant protection against both MS and SLE.


Journal of Immunology | 2007

Sensitive and Specific Real-Time Polymerase Chain Reaction Assays to Accurately Determine Copy Number Variations (CNVs) of Human Complement C4A, C4B, C4-Long, C4-Short, and RCCX Modules: Elucidation of C4 CNVs in 50 Consanguineous Subjects with Defined HLA Genotypes

Yee Ling Wu; Stephanie L. Savelli; Yan Yang; Bi Zhou; Brad H. Rovin; Daniel J. Birmingham; Haikady N. Nagaraja; Lee A. Hebert; C. Yung Yu

Recent comparative genome hybridization studies revealed that hundreds to thousands of human genomic loci can have interindividual copy number variations (CNVs). One of such CNV loci in the HLA codes for the immune effector protein complement component C4. Sensitive, specific, and accurate assays to interrogate the C4 CNV and its associated polymorphisms by using submicrogram quantities of genomic DNA are needed for high throughput epidemiologic studies of C4 CNVs in autoimmune, infectious, and neurological diseases. Quantitative real-time PCR (qPCR) assays were developed using TaqMan chemistry and based on sequences specific for C4A and C4B genes, structural characteristics corresponding to the long and short forms of C4 genes, and the breakpoint region of RP-C4-CYP21-TNX (RCCX) modular duplication. Assignments for gene copy numbers were achieved by relative standard curve methods using cloned C4 genomic DNA covering 6 logs of DNA concentrations for calibrations. The accuracies of test results were cross-confirmed internally in each sample, as the sum of C4A plus C4B equals to the sum of C4L plus C4S or the total copy number of RCCX modules. These qPCR assays were applied to determine C4 CNVs from samples of 50 consanguineous subjects who were mostly homozygous in HLA genotypes. The results revealed eight HLA haplotypes with single C4 genes in monomodular RCCX that are associated with multiple autoimmune and infectious diseases and 32 bimodular, 4 trimodular, and one quadrimodular RCCX. These C4 qPCR assays are proven to be robust, sensitive, and reliable, as they have contributed to the elucidation of C4 CNVs in >1000 human samples with autoimmune and neurological diseases.


Cytogenetic and Genome Research | 2008

Phenotypes, genotypes and disease susceptibility associated with gene copy number variations: complement C4 CNVs in European American healthy subjects and those with systemic lupus erythematosus.

Yee Ling Wu; Yan Yang; Erwin K. Chung; Bi Zhou; K.J. Kitzmiller; S.L. Savelli; Haikady N. Nagaraja; Daniel J. Birmingham; Betty P. Tsao; Brad H. Rovin; Lee A. Hebert; Chack-Yung Yu

A new paradigm in human genetics is high frequencies of inter-individual variations in copy numbers of specific genomic DNA segments. Such common copy number variation (CNV) loci often contain genes engaged in host-environment interaction including those involved in immune effector functions. DNA sequences within a CNV locus often share a high degree of identity but beneficial or deleterious polymorphic variants are present among different individuals. Thus, common gene CNVs can contribute, both qualitatively and quantitatively, to a spectrum of phenotypic variants. In this review we describe the phenotypic and genotypic diversities of complement C4 created by copy number variations of RCCX modules (RP-C4-CYP21-TNX) and size dichotomy of C4 genes. A direct outcome of C4 CNV is the generation of two classes of polymorphic proteins, C4A and C4B, with differential chemical reactivities towards peptide or carbohydrate antigens, and a range of C4 plasma protein concentrations (from 15 to 70 mg/dl) among healthy subjects. Deliberate molecular genetic studies enabled development of definitive techniques to determine exact patterns of RCCX modular variations, copy numbers of long and short C4A and C4B genes by Southern blot analyses or by real-time quantitative PCR. It is found that in healthy European Americans, the total C4 gene copy number per diploid genome ranges from 2 to 6: 60.8% of people with four copies of C4 genes, 27.2% with less than four copies, and 12% with more than four copies. Such a distribution is skewed towards the low copy number side in patients with systemic lupus erythematosus (SLE), a prototypic autoimmune disease with complex etiology. In SLE, the frequency of individuals with less than four copies of C4 is significantly increased (42.2%), while the frequency of those with more than four copies is decreased (6%). This decrease in total C4 gene copy number in SLE is due to increases in homozygous and heterozygous deficiencies of C4A but not C4B. Therefore, it is concluded that lower copy number of C4 is a risk factor for and higher gene copy number of C4 is a protective factor against SLE disease susceptibility.


eLife | 2014

Active RNAP pre-initiation sites are highly mutated by cytidine deaminases in yeast, with AID targeting small RNA genes

Benjamin Taylor; Yee Ling Wu; Cristina Rada

Cytidine deaminases are single stranded DNA mutators diversifying antibodies and restricting viral infection. Improper access to the genome leads to translocations and mutations in B cells and contributes to the mutation landscape in cancer, such as kataegis. It remains unclear how deaminases access double stranded genomes and whether off-target mutations favor certain loci, although transcription and opportunistic access during DNA repair are thought to play a role. In yeast, AID and the catalytic domain of APOBEC3G preferentially mutate transcriptionally active genes within narrow regions, 110 base pairs in width, fixed at RNA polymerase initiation sites. Unlike APOBEC3G, AID shows enhanced mutational preference for small RNA genes (tRNAs, snoRNAs and snRNAs) suggesting a putative role for RNA in its recruitment. We uncover the high affinity of the deaminases for the single stranded DNA exposed by initiating RNA polymerases (a DNA configuration reproduced at stalled polymerases) without a requirement for specific cofactors. DOI: http://dx.doi.org/10.7554/eLife.03553.001


Genes and Immunity | 2009

Molecular basis of complete complement C4 deficiency in two North-African families with systemic lupus erythematosus

Yee Ling Wu; G Hauptmann; M Viguier; Chack-Yung Yu

Complete deficiency of complement C4 is among the strongest genetic risk factors for human systemic lupus erythematosus (SLE). C4 is a constituent of the RP–C4–CYP21–TNX (RCCX) module in the human leukocyte antigen (HLA) that exhibits inter-individual copy-number and gene-size variations. Here, we studied two North-African families with complete C4 deficiency and SLE. The first included a Moroccan male SLE patient (1P) and a sibling, who were both homozygous for HLA-A*02 B*17 DRB1*07. The second had an Algerian female SLE patient (2P) homozygous for HLA-A*01 B*17 DRB1*13. Early SLE disease onset, the presence of photosensitive rashes, anti-Ro/SSA, renal disease and high titers of antinuclear antibodies were the common features of complete C4 deficiency. Southern blot analyses showed that 1P had monomodular RCCX with a long C4A, whereas 2P had bimodular RCCX with one long C4A and one short C4B. Genomic DNA fragments for these mutant genes were amplified and sequenced. A C>T transition that created the R540X nonsense mutation in C4A was found in 1P. An identical 4-bp insertion that generated the Y1537X nonsense mutation was discovered in both C4A and C4B of 2P. The high concordance of SLE and C4 deficiency among patients with non-DR3 and non-DR2 haplotypes underscores the importance of C4 proteins in the protection against SLE.


Frontiers in Immunology | 2016

Early Components of the Complement Classical Activation Pathway in Human Systemic Autoimmune Diseases

Katherine E. Lintner; Yee Ling Wu; Yan Yang; Charles H. Spencer; Georges Hauptmann; Lee A. Hebert; John P. Atkinson; C. Yung Yu

The complement system consists of effector proteins, regulators, and receptors that participate in host defense against pathogens. Activation of the complement system, via the classical pathway (CP), has long been recognized in immune complex-mediated tissue injury, most notably systemic lupus erythematosus (SLE). Paradoxically, a complete deficiency of an early component of the CP, as evidenced by homozygous genetic deficiencies reported in human, are strongly associated with the risk of developing SLE or a lupus-like disease. Similarly, isotype deficiency attributable to a gene copy-number (GCN) variation and/or the presence of autoantibodies directed against a CP component or a regulatory protein that result in an acquired deficiency are relatively common in SLE patients. Applying accurate assay methodologies with rigorous data validations, low GCNs of total C4, and heterozygous and homozygous deficiencies of C4A have been shown as medium to large effect size risk factors, while high copy numbers of total C4 or C4A as prevalent protective factors, of European and East-Asian SLE. Here, we summarize the current knowledge related to genetic deficiency and insufficiency, and acquired protein deficiencies for C1q, C1r, C1s, C4A/C4B, and C2 in disease pathogenesis and prognosis of SLE, and, briefly, for other systemic autoimmune diseases. As the complement system is increasingly found to be associated with autoimmune diseases and immune-mediated diseases, it has become an attractive therapeutic target. We highlight the recent developments and offer a balanced perspective concerning future investigations and therapeutic applications with a focus on early components of the CP in human systemic autoimmune diseases.


Molecular Immunology | 2009

Great genotypic and phenotypic diversities associated with copy-number variations of complement C4 and RP-C4-CYP21-TNX (RCCX) modules: A comparison of Asian-Indian and European American populations

Kapil Saxena; Kathryn J. Kitzmiller; Yee Ling Wu; Bi Zhou; Nazreen Esack; Leena Hiremath; Erwin K. Chung; Yan Yang; C. Yung Yu

Inter-individual gene copy-number variations (CNVs) probably afford human populations the flexibility to respond to a variety of environmental challenges, but also lead to differential disease predispositions. We investigated gene CNVs for complement component C4 and steroid 21-hydroxylase from the RP-C4-CYP21-TNX (RCCX) modules located in the major histocompatibility complex among healthy Asian-Indian Americans (AIA) and compared them to European Americans. A combination of definitive techniques that yielded cross-confirmatory results was used. The medium gene copy-numbers for C4 and its isotypes, acidic C4A and basic C4B, were 4, 2 and 2, respectively, but their frequencies were only 53-56%. The distribution patterns for total C4 and C4A are skewed towards the high copy-number side. For example, the frequency of AIA-subjects with three copies of C4A (30.7%) was 3.92-fold of those with a single copy (7.83%). The monomodular-short haplotype with a single C4B gene and the absence of C4A, which is in linkage-disequilibrium with HLA DRB1*0301 in Europeans and a strong risk factor for autoimmune diseases, has a frequency of 0.012 in AIA but 0.106 among healthy European Americans (p=6.6x10(-8)). The copy-number and the size of C4 genes strongly determine the plasma C4 protein concentrations. Parallel variations in copy-numbers of CYP21A (CYP21A1P) and TNXA with total C4 were also observed. Notably, 13.1% of AIA-subjects had three copies of the functional CYP21B, which were likely generated by recombinations between monomodular and bimodular RCCX haplotypes. The high copy-numbers of C4 and the high frequency of RCCX recombinants offer important insights to the prevalence of autoimmune and genetic diseases.

Collaboration


Dive into the Yee Ling Wu's collaboration.

Top Co-Authors

Avatar

Yan Yang

Ohio State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bi Zhou

Ohio State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gloria C. Higgins

Nationwide Children's Hospital

View shared research outputs
Researchain Logo
Decentralizing Knowledge