Yefim Anbinder
Technion – Israel Institute of Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Yefim Anbinder.
Nature Genetics | 2001
Hanna Mandel; Raymonde Szargel; Valentina Labay; Orly Elpeleg; Ann Saada; Adel Shalata; Yefim Anbinder; Drora Berkowitz; Corina Hartman; Mila Barak; Staffan Eriksson; Nadine Cohen
Mitochondrial DNA (mtDNA)–depletion syndromes (MDS; OMIM 251880) are phenotypically heterogeneous, autosomal-recessive disorders characterized by tissue-specific reduction in mtDNA copy number. Affected individuals with the hepatocerebral form of MDS have early progressive liver failure and neurological abnormalities, hypoglycemia and increased lactate in body fluids. Affected tissues show both decreased activity of the mtDNA-encoded respiratory chain complexes (I, III, IV, V) and mtDNA depletion. We used homozygosity mapping in three kindreds of Druze origin to map the gene causing hepatocerebral MDS to a region of 6.1 cM on chromosome 2p13, between markers D2S291 and D2S2116. This interval encompasses the gene (DGUOK) encoding the mitochondrial deoxyguanosine kinase (dGK). We identified a single-nucleotide deletion (204delA) within the coding region of DGUOK that segregates with the disease in the three kindreds studied. Western-blot analysis did not detect dGK protein in the liver of affected individuals. The main supply of deoxyribonucleotides (dNTPs) for mtDNA synthesis comes from the salvage pathway initiated by dGK and thymidine kinase-2 (TK2). The association of mtDNA depletion with mutated DGUOK suggests that the salvage-pathway enzymes are involved in the maintenance of balanced mitochondrial dNTP pools.
Arteriosclerosis, Thrombosis, and Vascular Biology | 2007
Uzi Milman; Shany Blum; Chen Shapira; Doron Aronson; Rachel Miller-Lotan; Yefim Anbinder; Junia Alshiek; Lawrence Bennett; Maria Kostenko; Michele Landau; Shlomo Keidar; Yishai Levy; Alexander Khemlin; Arman Radan; Andrew P. Levy
Objective—Clinical trials of vitamin E have failed to demonstrate a decrease in cardiovascular events. However, these studies did not address possible benefit to subgroups with increased oxidative stress. Haptoglobin (Hp), a major antioxidant protein, is a determinant of cardiovascular events in patients with Type 2 diabetes mellitus (DM). The Hp gene is polymorphic with 2 common alleles, 1 and 2. The Hp 2 allelic protein product provides inferior antioxidant protection compared with the Hp 1 allelic product. We sought to test the hypothesis that vitamin E could reduce cardiovascular events in DM individuals with the Hp 2-2 genotype, a subgroup that comprises 2% to 3% of the general population. Methods and Results—1434 DM individuals ≥55 years of age with the Hp 2-2 genotype were randomized to vitamin E (400 U/d) or placebo. The primary composite outcome was myocardial infarction, stroke, and cardiovascular death. At the first evaluation of events, 18 months after initiating the study, the primary outcome was significantly reduced in individuals receiving vitamin E (2.2%) compared with placebo (4.7%; P=0.01) and led to early termination of the study. Conclusions—Vitamin E supplementation appears to reduce cardiovascular events in individuals with DM and the Hp 2-2 genotype (ClinicalTrials.gov NCT00220831).
Antioxidants & Redox Signaling | 2010
Andrew P. Levy; Rabea Asleh; Shany Blum; Nina S. Levy; Rachel Miller-Lotan; Shiri Kalet-Litman; Yefim Anbinder; Orit Lache; Farid Nakhoul; Roy Asaf; Dan Farbstein; Mordechai Pollak; Yitzhak Z. Soloveichik; Merav Strauss; Jonia Alshiek; Alina Livshits; Avery Schwartz; Hoda Awad; Kheir Jad; Hagit Goldenstein
Haptoglobin is an abundant hemoglobin-binding protein present in the plasma. The function of haptoglobin is primarily to determine the fate of hemoglobin released from red blood cells after either intravascular or extravascular hemolysis. There are two common alleles at the Hp genetic locus denoted 1 and 2. There are functional differences between the Hp 1 and Hp 2 protein products in protecting against hemoglobin-driven oxidative stress that appear to have important clinical significance. In particular, individuals with the Hp 2-2 genotype and diabetes mellitus appear to be at significantly higher risk of microvascular and macrovascular complications. A pharmacogenomic strategy of administering high dose antioxidants specifically to Hp 2-2 DM individuals may be clinically effective.
Nature Genetics | 2001
Eli Sprecher; Reuven Bergman; Gabriele Richard; Raziel Lurie; Stavit A. Shalev; Dan Petronius; Adel Shalata; Yefim Anbinder; Rina Leibu; Ido Perlman; Nadine Cohen; Raymonde Szargel
Congenital hypotrichosis associated with juvenile macular dystrophy (HJMD; MIM601553) is an autosomal recessive disorder of unknown etiology, characterized by hair loss heralding progressive macular degeneration and early blindness. We used homozygosity mapping in four consanguineous families to localize the gene defective in HJMD to 16q22.1. This region contains CDH3, encoding P-cadherin, which is expressed in the retinal pigment epithelium and hair follicles. Mutation analysis shows in all families a common homozygous deletion in exon 8 of CDH3. These results establish the molecular etiology of HJMD and implicate for the first time a cadherin molecule in the pathogenesis of a human hair and retinal disorder.
Human Mutation | 2000
Tal Raz; Valentina Labay; Dana Baron; Raymonde Szargel; Yefim Anbinder; Timothy Barrett; Wolfgang Rabl; Marcos B. Viana; Hanna Mandel; André Baruchel; Jean-Michel Cayuela; Nadine Cohen
Thiamine responsive megaloblastic anemia (TRMA) is an autosomal recessive disorder with a triad of symptoms: megaloblastic anemia, deafness, and non‐type 1 diabetes mellitus. Occasionally, cardiac abnormalities and abnormalities of the optic nerve and retina occur as well. Patients with TRMA often respond to treatment with pharmacological doses of thiamine. Recently, mutations were found in patients with TRMA in a thiamine transporter gene (SLC19A2). We here describe the mutations found in eight additional families. We found four novel mutations and three that were previously described. Of the novel ones, one is a nonsense mutation in exon 1 (E65X), two are missense mutations in exon 2 (S142F, D93H), and another is a mutation in the splicing donor site at the 5′ end of intron 4 (C1223+1G>A). We also summarize the state of knowledge on all mutations found to date in TRMA patients. SLC19A2 is the first thiamine transporter gene to be described in humans. Reviewing the location and effect of the disease causing mutations can shed light on the way the protein functions and suggest ways to continue its investigation. Hum Mutat 16:37–42, 2000.
Cardiovascular Diabetology | 2011
Melissa Simpson; Janet K. Snell-Bergeon; Gregory L. Kinney; Orit Lache; Rachel Miller-Lotan; Yefim Anbinder; Marian Rewers; Andrew P. Levy
BackgroundCoronary artery disease has been linked with genotypes for haptoglobin (Hp) which modulates extracorpuscular hemoglobin. We hypothesized that the Hp genotype would predict progression of coronary artery calcification (CAC), a marker of subclinical atherosclerosis.MethodsCAC was measured three times in six years among 436 subjects with type 1 diabetes and 526 control subjects participating in the Coronary Artery Calcification in Type 1 Diabetes (CACTI) study. Hp typing was performed on plasma samples by polyacrylamide gel electrophoresis.ResultsThe Hp 2-2 genotype predicted development of significant CAC only in subjects with diabetes who were free of CAC at baseline (OR: 1.95, 95% CI: 1.07-3.56, p = 0.03), compared to those without the Hp 2-2 genotype, controlling for age, sex, blood pressure and HDL-cholesterol. Hp 2 appeared to have an allele-dose effect on development of CAC. Hp genotype did not predict CAC progression in individuals without diabetes.ConclusionsHp genotype may aid prediction of accelerated coronary atherosclerosis in subjects with type 1 diabetes.
Atherosclerosis | 2011
Dan Farbstein; Shany Blum; Mordechai Pollak; Roy Asaf; Hilla Lee Viener; Orit Lache; Rabea Asleh; Rachel Miller-Lotan; Ido Barkay; Michael Star; Avery Schwartz; Shiri Kalet-Littman; David Ozeri; Jacob Vaya; Hagai Tavori; Moshe Vardi; Arie Laor; Stephen E. Bucher; Yefim Anbinder; Doron Moskovich; Nur Abbas; Netta Perry; Yishai Levy; Andrew P. Levy
OBJECTIVE Vitamin E provides cardiovascular protection to individuals with diabetes and the haptoglobin 2-2 genotype but appears to increase cardiovascular risk in individuals with diabetes and the haptoglobin 2-1 genotype. We have previously demonstrated that the haptoglobin protein is associated with HDL and that HDL function and its oxidative modification are haptoglobin genotype dependent. We set out to test the hypothesis that the pharmacogenetic interaction between the haptoglobin genotype on cardiovascular risk might be secondary to a parallel interaction between the haptoglobin genotype and vitamin E on HDL function. RESEARCH DESIGN AND METHODS Fifty-nine individuals with diabetes and the haptoglobin 2-1 or 2-2 genotypes were studied in a double-blind placebo controlled crossover design. Participants were treated with either vitamin E (400IU) or placebo for 3 months and crossed over for an equivalent duration. Serum was collected at baseline and after the completion of each treatment. HDL functionality as well as HDL associated markers of oxidation and inflammation were measured after each interval in HDL purified from the cohort. RESULTS Compared to placebo, vitamin E significantly increased HDL function in haptoglobin 2-2 but significantly decreased HDL function in haptoglobin 2-1. This pharmacogenetic interaction was paralleled by similar non-significant trends in HDL associated lipid peroxides, glutathione peroxidase, and inflammatory cargo. CONCLUSION There exists a pharmacogenetic interaction between the haptoglobin genotype and vitamin E on HDL function (clinicaltrials.gov NCT01113671).
Diabetes | 2013
Trevor J. Orchard; Wanjie Sun; Patricia A. Cleary; Saul Genuth; John M. Lachin; Paula McGee; Andrew D. Paterson; Philip Raskin; Yefim Anbinder; Andrew P. Levy
Many patients with type 1 diabetes develop renal disease despite moderately good metabolic control, suggesting other risk factors may play a role. Recent evidence suggests that the haptoglobin (HP) 2-2 genotype, which codes for a protein with reduced antioxidant activity, may predict renal function decline in type 1 diabetes. We examined this hypothesis in 1,303 Caucasian participants in the Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications (DCCT/EDIC) study. HP genotype was determined by polyacrylamide gel electrophoresis. Glomerular filtration rate was estimated by the Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) equation and albumin excretion based on timed urine samples. Participants were followed up for a mean of 22 years. HP genotype was significantly associated with the development of sustained estimated glomerular filtration rate (GFR) <60 mL/min/1.73 m2 and with end-stage renal disease (ESRD), with HP 2-2 having greater risk than HP 2-1 and 1-1. No association was seen with albuminuria. Although there was no treatment group interaction, the associations were only significant in the conventional treatment group, where events rates were much higher. We conclude that the HP genotype is significantly associated with the development of reduced GFR and ESRD in the DCCT/EDIC study.
Prenatal Diagnosis | 2000
Adel Shalata; Hanna Mandel; Claude Dorche; Marie-Thérèse Zabot; Stavit A. Shalev; Yasir Hugeirat; Drugan Arieh; Zamir Ronit; Jochen Reiss; Yefim Anbinder; Nadine Cohen
Molybdenum cofactor deficiency (MoCoD) is an autosomal recessive, fatal neurological disorder, characterized by the combined deficiency of sulphite oxidase, xanthine dehydrogenase and aldehyde oxidase. We have recently reported an excessive occurrence of this fatal disorder among segments of the Arab population in Northern Israel suggesting that the true incidence of MoCoD is probably underestimated in this highly inbred population. This lethal disease can be diagnosed prenatally by assay of sulphite oxidase activity in chorionic villus samples in pregnancies of couples who have had previously affected children (obligatory carriers). However, to date, there is no biochemical assay for carrier detection among the population at risk. Recently we demonstrated the linkage of a MoCoD gene to an 8‐cM region on chromosome 6p21.3 in two consanguineous Israeli–Arab unrelated kindreds. The description of the MOCS1 gene that maps to the same region and which carries multiple mutations in MoCoD type A followed this finding. We describe here one additional kindred of Arab–Israeli origin, which is also linked to the MOCS1 locus, and demonstrate the feasibility of prenatal diagnosis and carrier detection using microsatellite markers in selected families when mutations are unknown. A complete correlation between the biochemical and DNA assays was found in a total of six samples (five chorionic villus and one amniocyte culture sample) obtained from the three MoCoD families. Copyright
Circulation | 2009
Rachel Miller-Lotan; Farid Nakhoul; Hoda Awad; Roy Asaf; Rabea Asleh; Yefim Anbinder; Andrew P. Levy