Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yen Chih Wang is active.

Publication


Featured researches published by Yen Chih Wang.


Journal of Immunology | 2013

Butyrophilin 3A1 Plays an Essential Role in Prenyl Pyrophosphate Stimulation of Human Vγ2Vδ2 T Cells

Hong Wang; Olivier Henry; Mark D. Distefano; Yen Chih Wang; Johanna Räikkönen; Jukka Mönkkönen; Yoshimasa Tanaka; Craig T. Morita

Most human γδ T cells express Vγ2Vδ2 TCRs and play important roles in microbial and tumor immunity. Vγ2Vδ2 T cells are stimulated by self- and foreign prenyl pyrophosphate intermediates in isoprenoid synthesis. However, little is known about the molecular basis for this stimulation. We find that a mAb specific for butyrophilin 3 (BTN3)/CD277 Ig superfamily proteins mimics prenyl pyrophosphates. The 20.1 mAb stimulated Vγ2Vδ2 T cell clones regardless of their functional phenotype or developmental origin and selectively expanded blood Vγ2Vδ2 T cells. The γδ TCR mediates 20.1 mAb stimulation because IL-2 is released by β− Jurkat cells transfected with Vγ2Vδ2 TCRs. 20.1 stimulation was not due to isopentenyl pyrophosphate (IPP) accumulation because 20.1 treatment of APC did not increase IPP levels. In addition, stimulation was not inhibited by statin treatment, which blocks IPP production. Importantly, small interfering RNA knockdown of BTN3A1 abolished stimulation by IPP that could be restored by re-expression of BTN3A1 but not by BTN3A2 or BTN3A3. Rhesus monkey and baboon APC presented HMBPP and 20.1 to human Vγ2Vδ2 T cells despite amino acid differences in BTN3A1 that localize to its outer surface. This suggests that the conserved inner and/or top surfaces of BTN3A1 interact with its counterreceptor. Although no binding site exists on the BTN3A1 extracellular domains, a model of the intracellular B30.2 domain predicts a basic pocket on its binding surface. However, BTN3A1 did not preferentially bind a photoaffinity prenyl pyrophosphate. Thus, BTN3A1 is required for stimulation by prenyl pyrophosphates but does not bind the intermediates with high affinity.


ACS Chemical Biology | 2014

Synthesis of site-specific DNA-protein conjugates and their effects on DNA replication.

Jung Eun Yeo; Susith Wickramaratne; Santoshkumar L. Khatwani; Yen Chih Wang; Jeffrey S. Vervacke; Mark D. Distefano; Natalia Tretyakova

DNA–protein cross-links (DPCs) are bulky, helix-distorting DNA lesions that form in the genome upon exposure to common antitumor drugs, environmental/occupational toxins, ionizing radiation, and endogenous free-radical-generating systems. As a result of their considerable size and their pronounced effects on DNA–protein interactions, DPCs can interfere with DNA replication, transcription, and repair, potentially leading to mutagenesis, genotoxicity, and cytotoxicity. However, the biological consequences of these ubiquitous lesions are not fully understood due to the difficulty of generating DNA substrates containing structurally defined, site-specific DPCs. In the present study, site-specific cross-links between the two biomolecules were generated by copper-catalyzed [3 + 2] Huisgen cycloaddition (click reaction) between an alkyne group from 5-(octa-1,7-diynyl)-uracil in DNA and an azide group within engineered proteins/polypeptides. The resulting DPC substrates were subjected to in vitro primer extension in the presence of human lesion bypass DNA polymerases η, κ, ν, and ι. We found that DPC lesions to the green fluorescent protein and a 23-mer peptide completely blocked DNA replication, while the cross-link to a 10-mer peptide was bypassed. These results indicate that the polymerases cannot read through the larger DPC lesions and further suggest that proteolytic degradation may be required to remove the replication block imposed by bulky DPC adducts.


Bioconjugate Chemistry | 2014

Engineering protein farnesyltransferase for enzymatic protein labeling applications

Jonathan K. Dozier; Santoshkumar L. Khatwani; James W. Wollack; Yen Chih Wang; Claudia Schmidt-Dannert; Mark D. Distefano

Creating covalent protein conjugates is an active area of research due to the wide range of uses for protein conjugates spanning everything from biological studies to protein therapeutics. Protein Farnesyltransferase (PFTase) has been used for the creation of site-specific protein conjugates, and a number of PFTase substrates have been developed to facilitate that work. PFTase is an effective catalyst for protein modification because it transfers Farnesyl diphosphate (FPP) analogues to protein substrates on a cysteine four residues from the C-terminus. While much work has been done to synthesize various FPP analogues, there are few reports investigating how mutations in PFTase alter the kinetics with these unnatural analogues. Herein we examined how different mutations within the PFTase active site alter the kinetics of the PFTase reaction with a series of large FPP analogues. We found that mutating either a single tryptophan or tyrosine residue to alanine results in greatly improved catalytic parameters, particularly in kcat. Mutation of tryptophan 102β to alanine caused a 4-fold increase in kcat and a 10-fold decrease in KM for a benzaldehyde-containing FPP analogue resulting in an overall 40-fold increase in catalytic efficiency. Similarly, mutation of tyrosine 205β to alanine caused a 25-fold increase in kcat and a 10-fold decrease in KM for a coumarin-containing analogue leading to a 300-fold increase in catalytic efficiency. Smaller but significant changes in catalytic parameters were also obtained for cyclo-octene- and NBD-containing FPP analogues. The latter compound was used to create a fluorescently labeled form of Ciliary Neurotrophic Factor (CNTF), a protein of therapeutic importance. Additionally, computational modeling was performed to study how the large non-natural isoprenoid analogues can fit into the active sites enlarged via mutagenesis. Overall, these results demonstrate that PFTase can be improved via mutagenesis in ways that will be useful for protein engineering and the creation of site-specific protein conjugates.


ACS Chemical Biology | 2014

Rapid analysis of protein farnesyltransferase substrate specificity using peptide libraries and isoprenoid diphosphate analogues.

Yen Chih Wang; Jonathan K. Dozier; Lorena S. Beese; Mark D. Distefano

Protein farnesytransferase (PFTase) catalyzes the farnesylation of proteins with a carboxy-terminal tetrapeptide sequence denoted as a Ca1a2X box. To explore the specificity of this enzyme, an important therapeutic target, solid-phase peptide synthesis in concert with a peptide inversion strategy was used to prepare two libraries, each containing 380 peptides. The libraries were screened using an alkyne-containing isoprenoid analogue followed by click chemistry with biotin azide and subsequent visualization with streptavidin-AP. Screening of the CVa2X and CCa2X libraries with Rattus norvegicus PFTase revealed reaction by many known recognition sequences as well as numerous unknown ones. Some of the latter occur in the genomes of bacteria and viruses and may be important for pathogenesis, suggesting new targets for therapeutic intervention. Screening of the CVa2X library with alkyne-functionalized isoprenoid substrates showed that those prepared from C10 or C15 precursors gave similar results, whereas the analogue synthesized from a C5 unit gave a different pattern of reactivity. Lastly, the substrate specificities of PFTases from three organisms (R. norvegicus, Saccharomyces cerevisiae, and Candida albicans) were compared using CVa2X libraries. R. norvegicus PFTase was found to share more peptide substrates with S. cerevisiae PFTase than with C. albicans PFTase. In general, this method is a highly efficient strategy for rapidly probing the specificity of this important enzyme.


Chemical Communications | 2012

Solid-phase synthesis of C-terminal peptide libraries for studying the specificity of enzymatic protein prenylation

Yen Chih Wang; Mark D. Distefano

Prenylation is an essential post-translational modification in all eukaryotes. Here we describe the synthesis of a 340-member library of peptides containing free C-termini on cellulose membranes. The resulting library was then used to probe the specificity of protein farnesyltransferase from S. cerevisiae.


Journal of Biological Chemistry | 2015

Error-prone Translesion Synthesis Past DNA-Peptide Cross-links Conjugated to the Major Groove of DNA via C5 of Thymidine

Susith Wickramaratne; Emily J. Boldry; Charles Buehler; Yen Chih Wang; Mark D. Distefano; Natalia Tretyakova

Background: DNA-protein conjugates can be induced by reactive oxygen species and proteolytically cleaved to the corresponding peptide conjugates. Results: Polymerase bypass past C5-dT peptide conjugates catalyzed by human polymerases η and κ gives rise to base substitutions and deletions. Conclusion: Replication past C5-T peptide conjugates is mutagenic. Significance: This study provides the first evidence for error-prone replication of DPCs cross-linked to pyrimidines in DNA. DNA-protein cross-links (DPCs) are exceptionally bulky, structurally diverse DNA adducts formed in cells upon exposure to endogenous and exogenous bis-electrophiles, reactive oxygen species, and ionizing radiation. If not repaired, DPCs can induce toxicity and mutations. It has been proposed that the protein component of a DPC is proteolytically degraded, giving rise to smaller DNA-peptide conjugates, which can be subject to nucleotide excision repair and replication bypass. In this study, polymerase bypass of model DNA-peptide conjugates structurally analogous to the lesions induced by reactive oxygen species and DNA methyltransferase inhibitors was examined. DNA oligomers containing site-specific DNA-peptide conjugates were generated by copper-catalyzed [3 + 2] Huisgen cyclo-addition between an alkyne-functionalized C5-thymidine in DNA and an azide-containing 10-mer peptide. The resulting DNA-peptide conjugates were subjected to steady-state kinetic experiments in the presence of recombinant human lesion bypass polymerases κ and η, followed by PAGE-based assays to determine the catalytic efficiency and the misinsertion frequency opposite the lesion. We found that human polymerase κ and η can incorporate A, G, C, or T opposite the C5-dT-conjugated DNA-peptide conjugates, whereas human polymerase η preferentially inserts G opposite the lesion. Furthermore, HPLC-ESI−-MS/MS sequencing of the extension products has revealed that post-lesion synthesis was highly error-prone, resulting in mutations opposite the adducted site or at the +1 position from the adduct and multiple deletions. Collectively, our results indicate that replication bypass of peptides conjugated to the C5 position of thymine by human translesion synthesis polymerases leads to large numbers of base substitution and frameshift mutations.


ACS Chemical Biology | 2016

Metabolic Labeling with an Alkyne-modified Isoprenoid Analog Facilitates Imaging and Quantification of the Prenylome in Cells

Charuta C. Palsuledesai; Joshua D. Ochocki; Michelle M. Kuhns; Yen Chih Wang; Janel K. Warmka; Dustin Chernick; Elizabeth V. Wattenberg; Ling Li; Edgar A. Arriaga; Mark D. Distefano

Protein prenylation is a post-translational modification that is responsible for membrane association and protein–protein interactions. The oncogenic protein Ras, which is prenylated, has been the subject of intense study in the past 20 years as a therapeutic target. Several studies have shown a correlation between neurodegenerative diseases including Alzheimer’s disease and Parkinson’s disease and protein prenylation. Here, a method for imaging and quantification of the prenylome using microscopy and flow cytometry is described. We show that metabolically incorporating an alkyne isoprenoid into mammalian cells, followed by a Cu(I)-catalyzed alkyne azide cycloaddition reaction to a fluorophore, allows for detection of prenylated proteins in several cell lines and that different cell types vary significantly in their levels of prenylated proteins. The addition of a prenyltransferase inhibitor or the precursors to the native isoprenoid substrates lowers the levels of labeled prenylated proteins. Finally, we demonstrate that there is a significantly higher (22%) level of prenylated proteins in a cellular model of compromised autophagy as compared to normal cells, supporting the hypothesis of a potential involvement of protein prenylation in abrogated autophagy. These results highlight the utility of total prenylome labeling for studies on the role of protein prenylation in various diseases including aging-related disorders.


Journal of Organic Chemistry | 2014

Diazirine-containing photoactivatable isoprenoid: synthesis and application in studies with isoprenylcysteine carboxyl methyltransferase.

Jeffrey S. Vervacke; Amy L. Funk; Yen Chih Wang; Mark Strom; Christine A. Hrycyna; Mark D. Distefano

Photoaffinity labeling is a useful technique employed to identify protein–ligand and protein–protein noncovalent interactions. Photolabeling experiments have been particularly informative for probing membrane-bound proteins where structural information is difficult to obtain. The most widely used classes of photoactive functionalities include aryl azides, diazocarbonyls, diazirines, and benzophenones. Diazirines are intrinsically smaller than benzophenones and generate carbenes upon photolysis that react with a broader range of amino acid side chains compared with the benzophenone-derived diradical; this makes diazirines potentially more general photoaffinity-labeling agents. In this article, we describe the development and application of a new isoprenoid analogue containing a diazirine moiety that was prepared in six steps and incorporated into an a-factor-derived peptide produced via solid-phase synthesis. In addition to the diazirine moiety, fluorescein and biotin groups were also incorporated into the peptide to aid in the detection and enrichment of photo-cross-linked products. This multifuctional diazirine-containing peptide was a substrate for Ste14p, the yeast homologue of the potential anticancer target Icmt, with Km (6.6 μM) and Vmax (947 pmol min–1 mg–1) values comparable or better than a-factor peptides functionalized with benzophenone-based isoprenoids. Photo-cross-linking experiments demonstrated that the diazirine probe photo-cross-linked to Ste14p with observably higher efficiency than benzophenone-containing a-factor peptides.


Current Medicinal Chemistry | 2013

Photoactive analogs of farnesyl diphosphate and related isoprenoids: design and applications in studies of medicinally important isoprenoid-utilizing enzymes.

Jeffrey S. Vervacke; Yen Chih Wang; Mark D. Distefano

Farnesyl diphosphate (FPP) is an important metabolic intermediate in the biosynthesis of a variety of molecules including sesquiterpenes and the side chains of a number of cofactors. FPP is also the source of isoprenoid side chains found attached to proteins. Enzymes that employ FPP as a substrate are of interest because they are involved in the semisynthesis of drugs as well as targets for drug design. Photoactive analogs of FPP have been useful for identifying enzymes that use this molecule as a substrate. A variety of photocrosslinking groups have been employed to prepare FPP analogs for use in such experiments including aryl azides, diazotrifluoropropionates and benzophenones. In this review, the design of these probes is described along with an examination of how they have been used in crosslinking experiments.


Bioorganic Chemistry | 2016

Synthetic isoprenoid analogues for the study of prenylated proteins: Fluorescent imaging and proteomic applications

Yen Chih Wang; Mark D. Distefano

Protein prenylation is a posttranslational modification catalyzed by prenyltransferases involving the attachment of farnesyl or geranylgeranyl groups to residues near the C-termini of proteins. This irreversible covalent modification is important for membrane localization and proper signal transduction. Here, the use of isoprenoid analogues for studying prenylated proteins is reviewed. First, experiments with analogues containing small fluorophores that are alternative substrates for prenyltransferases are described. Those analogues have been useful for quantifying binding affinity and for the production of fluorescently labeled proteins. Next, the use of analogues that incorporate biotin, bioorthogonal groups or antigenic moieties is described. Such probes have been particularly useful for identifying proteins that are naturally prenylated within mammalian cells. Overall, the use of isoprenoid analogues has contributed significantly to the understanding of protein prenlation.

Collaboration


Dive into the Yen Chih Wang's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge