Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mark D. Distefano is active.

Publication


Featured researches published by Mark D. Distefano.


Chemistry & Biology | 1997

Micropatterning gradients and controlling surface densities of photoactivatable biomolecules on self-assembled monolayers of oligo(ethylene glycol) alkanethiolates

Curtis B. Herbert; Terri L. McLernon; Claire L. Hypolite; Derek N. Adams; Lana Pikus; C. C. Huang; Gregg B. Fields; Paul C. Letourneau; Mark D. Distefano; Wei Shou Hu

BACKGROUND Bioactive molecules that are covalently immobilized in patterns on surfaces have previously been used to control or study cell behavior such as adhesion, spreading, movement or differentiation. Photoimmobilization techniques can be used, however, to control not only the spatial pattern of molecular immobilization, termed the micropattern, but also the surface density of the molecules--a characteristic that has not been previously exploited. RESULTS Oligopeptides containing the bioactive Arg-Gly-Asp cell-adhesion sequence were immobilized upon self-assembled monolayers of an oligo(ethylene glycol) alkanethiolate in patterns that were visualized and quantified by autoradiography. The amount and pattern of immobilized peptide were controlled by manipulating the exposure of the sample to a UV lamp or a laser beam. Patterns of peptides, including a density gradient, were used to control the location and number of adherent cells and also the cell shape. CONCLUSIONS A photoimmobilization technique for decorating surfaces with micropatterns that consist of variable densities of bioactive molecules is described. The efficacy of the patterns for controlling cell adhesion and shape has been demonstrated. This technique is useful for the study of cell behavior on micropatterns.


Journal of Immunology | 2013

Butyrophilin 3A1 Plays an Essential Role in Prenyl Pyrophosphate Stimulation of Human Vγ2Vδ2 T Cells

Hong Wang; Olivier Henry; Mark D. Distefano; Yen Chih Wang; Johanna Räikkönen; Jukka Mönkkönen; Yoshimasa Tanaka; Craig T. Morita

Most human γδ T cells express Vγ2Vδ2 TCRs and play important roles in microbial and tumor immunity. Vγ2Vδ2 T cells are stimulated by self- and foreign prenyl pyrophosphate intermediates in isoprenoid synthesis. However, little is known about the molecular basis for this stimulation. We find that a mAb specific for butyrophilin 3 (BTN3)/CD277 Ig superfamily proteins mimics prenyl pyrophosphates. The 20.1 mAb stimulated Vγ2Vδ2 T cell clones regardless of their functional phenotype or developmental origin and selectively expanded blood Vγ2Vδ2 T cells. The γδ TCR mediates 20.1 mAb stimulation because IL-2 is released by β− Jurkat cells transfected with Vγ2Vδ2 TCRs. 20.1 stimulation was not due to isopentenyl pyrophosphate (IPP) accumulation because 20.1 treatment of APC did not increase IPP levels. In addition, stimulation was not inhibited by statin treatment, which blocks IPP production. Importantly, small interfering RNA knockdown of BTN3A1 abolished stimulation by IPP that could be restored by re-expression of BTN3A1 but not by BTN3A2 or BTN3A3. Rhesus monkey and baboon APC presented HMBPP and 20.1 to human Vγ2Vδ2 T cells despite amino acid differences in BTN3A1 that localize to its outer surface. This suggests that the conserved inner and/or top surfaces of BTN3A1 interact with its counterreceptor. Although no binding site exists on the BTN3A1 extracellular domains, a model of the intracellular B30.2 domain predicts a basic pocket on its binding surface. However, BTN3A1 did not preferentially bind a photoaffinity prenyl pyrophosphate. Thus, BTN3A1 is required for stimulation by prenyl pyrophosphates but does not bind the intermediates with high affinity.


ChemBioChem | 2007

Selective Labeling of Proteins by Using Protein Farnesyltransferase

Benjamin P. Duckworth; Zhiyuan Zhang; Ayako Hosokawa; Mark D. Distefano

The challenging task of identifying and studying protein function has been greatly aided by labeling proteins with reporter groups. Here, we present a strategy that utilizes an enzyme that labels a four‐residue sequence appended onto the C terminus of a protein, with an alkyne‐containing substrate. By using a bio‐orthogonal cycloaddition reaction, a fluorophore that carried an azide moiety was then covalently coupled to the alkyne appended on the protein. FRET was used to calculate a Förster (R) distance of 40 Å between the eGFP chromophore and the newly appended Texas Red fluorophore. This experimental value is in good agreement with the predicted R value determined by using molecular modeling. The small recognition tag, the high specificity of the enzyme, and the orthogonal nature of the derivatization reaction will make this approach highly useful in protein chemistry.


Bioconjugate Chemistry | 2013

A highly efficient catalyst for oxime ligation and hydrazone-oxime exchange suitable for bioconjugation.

Mohammad Rashidian; Mohammad M. Mahmoodi; Rachit Shah; Jonathan K. Dozier; Carston R. Wagner; Mark D. Distefano

Imine-based reactions are useful for a wide range of bioconjugation applications. Although aniline is known to catalyze the oxime ligation reaction under physiological conditions, it suffers from slow reaction kinetics, specifically when a ketone is being used or when hydrazone-oxime exchange is performed. Here, we report on the discovery of a new catalyst that is up to 15 times more efficient than aniline. That catalyst, m-phenylenediamine (mPDA), was initially used to analyze the kinetics of oxime ligation on aldehyde- and ketone-containing small molecules. While mPDA is only modestly more effective than aniline when used in equal concentrations (~2-fold), its much greater aqueous solubility relative to aniline allows it to be used at higher concentrations, resulting in significantly more efficient catalysis. In the context of protein labeling, it was first used to site-specifically label an aldehyde-functionalized protein through oxime ligation, and its kinetics were compared to reaction with aniline. Next, a protein was labeled with an aldehyde-containing substrate in crude cell lysate, captured with hydrazide-functionalized beads and then the kinetics of immobilized protein release via hydrazone-oxime exchange were analyzed. Our results show that mPDA can release and label 15 times more protein than aniline can in 3 h. Then, using the new catalyst, ciliary neurotrophic factor, a protein with therapeutic potential, was successfully labeled with a fluorophore in only 5 min. Finally, a protein containing the unnatural amino acid, p-acetyl phenylalanine, a ketone-containing residue, was prepared and PEGylated efficiently via oxime ligation using mPDA. This new catalyst should have a significant impact on the field of bioconjugation, where oxime ligation and hydrazone-oxime exchange are commonly employed.


Journal of the American Chemical Society | 2012

Chemoenzymatic Reversible Immobilization and Labeling of Proteins without Prior Purification

Mohammad Rashidian; James M. Song; Rachel E. Pricer; Mark D. Distefano

Site-specific chemical modification of proteins is important for many applications in biology and biotechnology. Recently, our laboratory and others have exploited the high specificity of the enzyme protein farnesyltransferase (PFTase) to site-specifically modify proteins through the use of alternative substrates that incorporate bioorthogonal functionality including azides and alkynes. In this study, we evaluate two aldehyde-containing molecules as substrates for PFTase and as reactants in both oxime and hydrazone formation. Using green fluorescent protein (GFP) as a model system, we demonstrate that the purified protein can be enzymatically modified with either analogue to yield aldehyde-functionalized proteins. Oxime or hydrazone formation was then employed to immobilize, fluorescently label, or PEGylate the resulting aldehyde-containing proteins. Immobilization via hydrazone formation was also shown to be reversible via transoximization with a fluorescent alkoxyamine. After characterizing this labeling strategy using pure protein, the specificity of the enzymatic process was used to selectively label GFP present in crude E. coli extract followed by capture of the aldehyde-modified protein using hydrazide-agarose. Subsequent incubation of the immobilized protein using a fluorescently labeled or PEGylated alkoxyamine resulted in the release of pure GFP containing the desired site-specific covalent modifications. This procedure was also employed to produce PEGylated glucose-dependent insulinotropic polypeptide (GIP), a protein with potential therapeutic activity for diabetes. Given the specificity of the PFTase-catalyzed reaction coupled with the ability to introduce a CAAX-box recognition sequence onto almost any protein, this method shows great potential as a general approach for selective immobilization and labeling of recombinant proteins present in crude cellular extract without prior purification. Beyond generating site-specifically modified proteins, this approach for polypeptide modification could be particularly useful for large-scale production of protein conjugates for therapeutic or industrial applications.


The FASEB Journal | 1988

Molecular basis of bacterial resistance to organomercurial and inorganic mercuric salts

Christopher T. Walsh; Mark D. Distefano; Melissa J. Moore; Lisa M. Shewchuk; Gregory L. Verdine

Bacteria mediate resistance to organomercurial and inorganic mercuric salts by metabolic conversion to nontoxic elemental mercury, Hg(0). The genes responsible for mercury resistance are organized in the mer operon, and such operons are often found in plasmids that also bear drug resistance determinants. We have subcloned three of these mer genes, merR, merB, and merA, and have studied their protein products via protein overproduction and purification, and structural and functional characterization. MerR is a metallo‐regulatory DNA‐binding protein that acts as a repressor both its own and structural gene transcription in the absence of Hg(II); in addition it acts as a positive effector of structural gene transcription when Hg(II) is present. MerB, organomercury lyase, catalyzes the protonolytic fragmentation of organomercurials to the parent hydrocarbon and Hg(II) by an apparent SE2 mechanism. MerA, mercuric ion reductase, is an FAD‐containing and redox‐active disulfide‐containing enzyme with homology to glutathione reductase. It has evolved the unique catalytic capacity to reduce Hg(II) to Hg(0) and thereby complete the detoxification scheme.—Walsh, C. T.; Distefano, M. D.; Moore, M. J.; Shewchuk, L. M.; Verdine, G. L. Molecular basis of bacterial resistance to organomercurial and inorganic mercuric salts. FASEB J. 2: 124‐130; 1988.


ACS Chemical Biology | 2015

Protein Prenylation: Enzymes, Therapeutics, and Biotechnology Applications

Charuta C. Palsuledesai; Mark D. Distefano

Protein prenylation is a ubiquitous covalent post-translational modification found in all eukaryotic cells, comprising attachment of either a farnesyl or a geranylgeranyl isoprenoid. It is essential for the proper cellular activity of numerous proteins, including Ras family GTPases and heterotrimeric G-proteins. Inhibition of prenylation has been extensively investigated to suppress the activity of oncogenic Ras proteins to achieve antitumor activity. Here, we review the biochemistry of the prenyltransferase enzymes and numerous isoprenoid analogs synthesized to investigate various aspects of prenylation and prenyltransferases. We also give an account of the current status of prenyltransferase inhibitors as potential therapeutics against several diseases including cancers, progeria, aging, parasitic diseases, and bacterial and viral infections. Finally, we discuss recent progress in utilizing protein prenylation for site-specific protein labeling for various biotechnology applications.


Chemical Biology & Drug Design | 2010

Evaluation of Alkyne‐Modified Isoprenoids as Chemical Reporters of Protein Prenylation

Amanda J. DeGraw; Charuta C. Palsuledesai; Joshua D. Ochocki; Jonathan K. Dozier; Stepan Lenevich; Mohammad Rashidian; Mark D. Distefano

Protein prenyltransferases catalyze the attachment of C15 (farnesyl) and C20 (geranylgeranyl) groups to proteins at specific sequences localized at or near the C‐termini of specific proteins. Determination of the specific protein prenyltransferase substrates affected by the inhibition of these enzymes is critical for enhancing knowledge of the mechanism of such potential drugs. Here, we investigate the utility of alkyne‐containing isoprenoid analogs for chemical proteomics experiments by showing that these compounds readily penetrate mammalian cells in culture and become incorporated into proteins that are normally prenylated. Derivatization via Cu(I) catalyzed click reaction with a fluorescent azide reagent allows the proteins to be visualized and their relative levels to be analyzed. Simultaneous treatment of cells with these probes and inhibitors of prenylation reveals decreases in the levels of some but not all of the labeled proteins. Two‐dimensional electrophoretic separation of these labeled proteins followed by mass spectrometric analysis allowed several labeled proteins to be unambiguously identified. Docking experiments and density functional theory calculations suggest that the substrate specificity of protein farnesyl transferase may vary depending on whether azide‐ or alkyne‐based isoprenoid analogs is employed. These results demonstrate the utility of alkyne‐containing analogs for chemical proteomic applications.


Journal of Immunology | 2008

Photoaffinity Antigens for Human γδ T Cells

Ghanashyam Sarikonda; Hong Wang; Kia Joo Puan; Xiao hui Liu; Hoi K. Lee; Yongcheng Song; Mark D. Distefano; Eric Oldfield; Glenn D. Prestwich; Craig T. Morita

Vγ2Vδ2 T cells comprise the major subset of peripheral blood γδ T cells in humans and expand during infections by recognizing small nonpeptide prenyl pyrophosphates. These molecules include (E)-4-hydroxy-3-methyl-but-2-enyl-pyrophosphate (HMBPP), a microbial isoprenoid intermediate, and isopentenyl pyrophosphate, an endogenous isoprenoid intermediate. Recognition of these nonpeptide Ags is mediated by the Vγ2Vδ2 T cell Ag receptor. Several findings suggest that prenyl pyrophosphates are presented by an Ag-presenting molecule: contact between T cells and APC is required, the Ags do not bind the Vγ2Vδ2 TCR directly, and Ag recognition is abrogated by TCR mutations in CDRs distant from the putative Ag recognition site. Identification of the putative Ag-presenting molecule, however, has been hindered by the inability to achieve stable association of nonpeptide prenyl pyrophosphate Ags with the presenting molecule. In this study, we show that photoaffinity analogues of HMBPP, meta/para-benzophenone-(methylene)-prenyl pyrophosphates (m/p-BZ-(C)-C5-OPP), can crosslink to the surface of tumor cell lines and be presented as Ags to γδ T cells. Mutant tumor cell lines lacking MHC class I, MHC class II, β2-microglobulin, and CD1, as well as tumor cell lines from a variety of tissues and individuals, will all crosslink to and present m-BZ-C5-OPP. Finally, pulsing of BZ-(C)-C5-OPP is inhibited by isopentenyl pyrophosphate and an inactive analog, suggesting that they bind to the same molecule. Taken together, these results suggest that nonpeptide Ags are presented by a novel-Ag-presenting molecule that is widely distributed and nonpolymorphic, but not classical MHC class I, MHC class II, or CD1.


ChemBioChem | 2010

Sesquiterpene Synthases Cop4 and Cop6 from Coprinus cinereus: Catalytic Promiscuity and Cyclization of Farnesyl Pyrophosphate Geometric Isomers

Fernando López-Gallego; Sean Agger; Daniel Abate-Pella; Mark D. Distefano; Claudia Schmidt-Dannert

Sesquiterpene synthases catalyze with different catalytic fidelity the cyclization of farnesyl pyrophosphate (FPP) into hundreds of known compounds with diverse structures and stereochemistries. Two sesquiterpene synthases, Cop4 and Cop6, were previously isolated from Coprinus cinereus as part of a fungal genome survey. This study investigates the reaction mechanism and catalytic fidelity of the two enzymes. Cyclization of all‐trans‐FPP ((E,E)‐FPP) was compared to the cyclization of the cis–trans isomer of FPP ((Z,E)‐FPP) as a surrogate for the secondary cisoid neryl cation intermediate generated by sesquiterpene synthases, which are capable of isomerizing the C2C3 π bond of all‐trans‐FPP. Cop6 is a “high‐fidelity” α‐cuprenene synthase that retains its fidelity under various conditions tested. Cop4 is a catalytically promiscuous enzyme that cyclizes (E,E)‐FPP into multiple products, including (−)‐germacrene D and cubebol. Changing the pH of the reaction drastically alters the fidelity of Cop4 and makes it a highly selective enzyme. Cyclization of (Z,E)‐FPP by Cop4 and Cop6 yields products that are very different from those obtained with (E,E)‐FPP. Conversion of (E,E)‐FPP proceeds via a (6R)‐β‐bisabolyl carbocation in the case of Cop6 and an (E,E)‐germacradienyl carbocation in the case of Cop4. However, (Z,E)‐FPP is cyclized via a (6S)‐β‐bisabolene carbocation by both enzymes. Structural modeling suggests that differences in the active site and the loop that covers the active site of the two enzymes might explain their different catalytic fidelities.

Collaboration


Dive into the Mark D. Distefano's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hao Kuang

University of Minnesota

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mohammad Rashidian

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Igor Gaon

University of Minnesota

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge