Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yeon-Soo Seo is active.

Publication


Featured researches published by Yeon-Soo Seo.


Nature | 2001

RPA governs endonuclease switching during processing of Okazaki fragments in eukaryotes

Sung-Ho Bae; Kwang-Hee Bae; Jung-Ae Kim; Yeon-Soo Seo

Extensive work on the maturation of lagging strands during the replication of simian virus 40 DNA suggests that the initiator RNA primers of Okazaki fragments are removed by the combined action of two nucleases, RNase HI and Fen1, before the Okazaki fragments join. Despite the well established in vitro roles of these two enzymes, genetic analyses in yeast revealed that null mutants of RNase HI and/or Fen1 are not lethal, suggesting that an additional enzymatic activity may be required for the removal of RNA. One such enzyme is the Saccharomyces cerevisiae Dna2 helicase/endonuclease, which is essential for cell viability and is well suited to removing RNA primers of Okazaki fragments. In addition, Dna2 interacts genetically and physically with several proteins involved in the elongation or maturation of Okazaki fragments. Here we show that the endonucleases Dna2 and Fen1 act sequentially to facilitate the complete removal of the primer RNA. The sequential action of these enzymes is governed by a single-stranded DNA-binding protein, replication protein-A (RPA). Our results demonstrate that the processing of Okazaki fragments in eukaryotes differs significantly from, and is more complicated than, that occurring in prokaryotes. We propose a novel biochemical mechanism for the maturation of eukaryotic Okazaki fragments.


Journal of Biological Chemistry | 1998

Dna2 of Saccharomyces cerevisiae Possesses a Single-stranded DNA-specific Endonuclease Activity That Is Able to Act on Double-stranded DNA in the Presence of ATP

Sung-Ho Bae; Eunjoo Choi; Kyoung-Hwa Lee; Jung Sun Park; Sung-Hak Lee; Yeon-Soo Seo

To gain further insights into the biological functions of Dna2, previously known as a cellular replicative helicase in Saccharomyces cerevisiae, we examined biochemical properties of the recombinant Dna2 protein purified to homogeneity. Besides the single-stranded (ss) DNA-dependent ATPase activity as reported previously, we were able to demonstrate that ssDNA-specific endonuclease activity is intrinsically associated with Dna2. Moreover, Dna2 was capable of degrading duplex DNA in an ATP-dependent fashion. ATP and dATP, the only nucleotides hydrolyzed by Dna2, served to stimulate Dna2 to utilize duplex DNA, indicating their hydrolysis is required. Dna2 was able to unwind short duplex only under the condition where the endonuclease activity was minimized. This finding implies that Dna2 unwinds only partially the 3′-end of duplex DNA and generates a stretch of ssDNA of limited length, which is subsequently cleaved by the ssDNA-specific endonuclease activity. A point mutation at the conserved ATP-binding site of Dna2 inactivated concurrently ssDNA-dependent ATPase, ATP-dependent nuclease, and helicase activities, indicating that they all reside in Dna2 itself. By virtue of its nucleolytic activities, the Dna2 protein may function in the maintenance of chromosomal integrity, such as repair or other related process, rather than in propagation of cellular replication forks.


Proceedings of the National Academy of Sciences of the United States of America | 2003

The Cdc23 (Mcm10) protein is required for the phosphorylation of minichromosome maintenance complex by the Dfp1-Hsk1 kinase

Joon-Kyu Lee; Yeon-Soo Seo; Jerard Hurwitz

Previous studies in Saccharomyces cerevisiae have defined an essential role for the Dbf4-Cdc7 kinase complex in the initiation of DNA replication presumably by phosphorylation of target proteins, such as the minichromosome maintenance (Mcm) complex. We have examined the phosphorylation of the Mcm complex by the Dfp1-Hsk1 kinase, the Schizosaccharomyces pombe homologue of Dbf4-Cdc7. In vitro, the purified Dfp1-Hsk1 kinase efficiently phosphorylated Mcm2p. In contrast, Mcm2p, present in the six-subunit Mcm complex, was a poor substrate of this kinase and required Cdc23p (homologue of Mcm10p) for efficient phosphorylation. In the presence of Cdc23p, Dfp1-Hsk1 phosphorylated the Mcm2p and Mcm4p subunits of the Mcm complex. Cdc23p interacted with both the Mcm complex and Dfp1-Hsk1 by selectively binding to the Mcm4/6/7 subunits and Dfp1p, respectively. The N terminus of Cdc23p was found to interact directly with Dfp1-Hsk1 and was essential for phosphorylation of the Mcm complex. Truncated derivatives of Cdc23p that complemented the temperature-sensitive phenotype of cdc23 mutant cells also stimulated the phosphorylation of Mcm complex, implying that this activity might be a critical role of Cdc23p in vivo. These results suggest that Cdc23p participates in the activation of prereplicative complex by recruiting the Dfp1-Hsk1 kinase and stimulating the phosphorylation of the Mcm complex.


Critical Reviews in Biochemistry and Molecular Biology | 2010

Dna2 on the road to Okazaki fragment processing and genome stability in eukaryotes.

Young-Hoon Kang; Chul-Hwan Lee; Yeon-Soo Seo

DNA replication is a primary mechanism for maintaining genome integrity, but it serves this purpose best by cooperating with other proteins involved in DNA repair and recombination. Unlike leading strand synthesis, lagging strand synthesis has a greater risk of faulty replication for several reasons: First, a significant part of DNA is synthesized by polymerase α, which lacks a proofreading function. Second, a great number of Okazaki fragments are synthesized, processed and ligated per cell division. Third, the principal mechanism of Okazaki fragment processing is via generation of flaps, which have the potential to form a variety of structures in their sequence context. Finally, many proteins for the lagging strand interact with factors involved in repair and recombination. Thus, lagging strand DNA synthesis could be the best example of a converging place of both replication and repair proteins. To achieve the risky task with extraordinary fidelity, Okazaki fragment processing may depend on multiple layers of redundant, but connected pathways. An essential Dna2 endonuclease/helicase plays a pivotal role in processing common structural intermediates that occur during diverse DNA metabolisms (e.g. lagging strand synthesis and telomere maintenance). Many roles of Dna2 suggest that the preemptive removal of long or structured flaps ultimately contributes to genome maintenance in eukaryotes. In this review, we describe the function of Dna2 in Okazaki fragment processing, and discuss its role in the maintenance of genome integrity with an emphasis on its functional interactions with other factors required for genome maintenance.


Journal of Biological Chemistry | 2008

Studies with the Human Cohesin Establishment Factor, ChlR1 ASSOCIATION OF ChlR1 WITH Ctf18-RFC AND Fen1

Andrea Farina; Jae-Ho Shin; Do Hyung Kim; Vladimir P. Bermudez; Zvi Kelman; Yeon-Soo Seo; Jerard Hurwitz

Human ChlR1 (hChlR1), a member of the DEAD/DEAH subfamily of helicases, was shown to interact with components of the cohesin complex and play a role in sister chromatid cohesion. In order to study the biochemical and biological properties of hChlR1, we purified the protein from 293 cells and demonstrated that hChlR1 possesses DNA-dependent ATPase and helicase activities. This helicase translocates on single-stranded DNA in the 5′ to 3′ direction in the presence of ATP and, to a lesser extent, dATP. Its unwinding activity requires a 5′-singlestranded region for helicase loading, since flush-ended duplex structures do not support unwinding. The helicase activity of hChlR1 is capable of displacing duplex regions up to 100 bp, which can be extended to 500 bp by RPA or the cohesion establishment factor, the Ctf18-RFC (replication factor C) complex. We show that hChlR1 interacts with the hCtf18-RFC complex, human proliferating cell nuclear antigen, and hFen1. The interactions between Fen1 and hChlR1 stimulate the flap endonuclease activity of Fen1. Selective depletion of either hChlR1 or Fen1 by targeted small interfering RNA treatment results in the precocious separation of sister chromatids. These findings are consistent with a role of hChlR1 in the establishment of sister chromatid cohesion and suggest that its action may contribute to lagging strand processing events important in cohesion.


Molecular and Cellular Biology | 2004

Fission yeast Dna2 is required for generation of the telomeric single-strand overhang

Kazunori Tomita; Tatsuya Kibe; Hoyoung Kang; Yeon-Soo Seo; Masahiro Uritani; Takashi Ushimaru; Masaru Ueno

ABSTRACT It has been suggested that the Schizosaccharomyces pombe Rad50 (Rad50-Rad32-Nbs1) complex is required for the resection of the C-rich strand at telomere ends in taz1-d cells. However, the nuclease-deficient Rad32-D25A mutant can still resect the C-rich strand, suggesting the existence of a nuclease that resects the C-rich strand. Here, we demonstrate that a taz1-d dna2-2C double mutant lost the G-rich overhang at a semipermissive temperature. The amount of G-rich overhang in S phase in the dna2-C2 mutant was lower than that in wild-type cells at the semipermissive temperature. Dna2 bound to telomere DNA in a chromatin immunoprecipitation assay. Moreover, telomere length decreased with each generation after shift of the dna2-2C mutant to the semipermissive temperature. These results suggest that Dna2 is involved in the generation of G-rich overhangs in both wild-type cells and taz1-d cells. The dna2-C2 mutant was not gamma ray sensitive at the semipermissive temperature, suggesting that the ability to process double-strand break (DSB) ends was not affected in the dna2-C2 mutant. Our results reveal that DSB ends and telomere ends are processed by different mechanisms.


Nucleic Acids Research | 2006

Isolation of human Dna2 endonuclease and characterization of its enzymatic properties

Jeong-Hoon Kim; Hee-Dai Kim; Gi-Hyuck Ryu; Do Hyung Kim; Jerard Hurwitz; Yeon-Soo Seo

In eukaryotes, the creation of ligatable nicks in DNA from flap structures generated by DNA polymerase δ-catalyzed displacement DNA synthesis during Okazaki fragment processing depends on the combined action of Fen1 and Dna2. These two enzymes contain partially overlapping but distinct endonuclease activities. Dna2 is well-suited to process long flaps, which are converted to nicks by the subsequent action of Fen1. In this report, we purified human Dna2 as a recombinant protein from human cells transfected with the cDNA of the human homologue of Saccharomyces cerevisiae Dna2. We demonstrated that the purified human Dna2 enzyme contains intrinsic endonuclease and DNA-dependent ATPase activities, but is devoid of detectable DNA helicase activity. We determined a number of enzymatic properties of human Dna2 including its substrate specificity. When both 5′ and 3′ tailed ssDNAs were present in a substrate, such as a forked-structured one, both single-stranded regions were cleaved by human Dna2 (hDna2) with equal efficiency. Based on this and other properties of hDna2, it is likely that this enzyme facilitates the removal of 5′ and 3′ regions in equilibrating flaps that are likely to arise during the processing of Okazaki fragments in human cells.


International Journal of Cancer | 2009

RhoB induces apoptosis via direct interaction with TNFAIP1 in HeLa cells.

Dong-Myung Kim; Kyung-Sook Chung; Shin-Jung Choi; Yu-Jin Jung; Song-Kyu Park; Gyoonhee Han; Jae-Seok Ha; Kyung-Bin Song; Nam-Song Choi; Hwan-Mook Kim; Misun Won; Yeon-Soo Seo

RhoB, a tumor suppressor, has emerged as an interesting cancer target, and extensive studies aimed at understanding its role in apoptosis have been performed. In our study, we investigated the involvement of RhoB‐interacting molecules in apoptosis. To identify RhoB‐interacting proteins, we performed yeast‐two hybrid screening assays using RhoB as a bait and isolated TNFAIP1, a TNFα‐induced protein containing the BTB/POZ domain. The interaction between RhoB and TNFAIP1 was demonstrated in vivo through coimmunoprecipitation studies and in vitro binding assays. RFP‐TNFAIP1 was found to be partially colocalized with EGFP‐RhoB. The partial colocalization of RhoB and TNFAIP1 in endosomes suggests that RhoB‐TNFAIP1 interactions may have a functional role in apoptosis. TNFAIP1 elicited proapoptotic activity, while simultaneous expression of RhoB and TNFAIP1 resulted in a dramatic increase in apoptosis in HeLa cells. Furthermore, knockdown of RhoB using siRNA clearly rescued cells from apoptosis induced by TNFAIP1. This finding suggests that interactions between RhoB and TNFAIP1 are crucial for induction of apoptosis in HeLa cells. The observation of increased SAPK/JNK phosphorylation in apoptotic cells and the finding that a JNK inhibitor suppressed apoptosis indicates that SAPK/JNK signaling may be involved in apoptosis induced by RhoB‐TNFAIP1 interactions. In conclusion, we found that RhoB interacts with TNFAIP1 to regulate apoptosis via a SAPK/JNK‐mediated signal transduction mechanism.


Molecular and Cellular Biology | 2007

The Human F-Box DNA Helicase FBH1 Faces Saccharomyces cerevisiae Srs2 and Postreplication Repair Pathway Roles

Irene Chiolo; Marco Saponaro; Anastasia Baryshnikova; Jeong-Hoon Kim; Yeon-Soo Seo; Giordano Liberi

ABSTRACT The Saccharomyces cerevisiae Srs2 UvrD DNA helicase controls genome integrity by preventing unscheduled recombination events. While Srs2 orthologues have been identified in prokaryotic and lower eukaryotic organisms, human orthologues of Srs2 have not been described so far. We found that the human F-box DNA helicase hFBH1 suppresses specific recombination defects of S. cerevisiae srs2 mutants, consistent with the finding that the helicase domain of hFBH1 is highly conserved with that of Srs2. Surprisingly, hFBH1 in the absence of SRS2 also suppresses the DNA damage sensitivity caused by inactivation of postreplication repair-dependent functions leading to PCNA ubiquitylation. The F-box domain of hFBH1, which is not present in Srs2, is crucial for hFBH1 functions in substituting for Srs2 and postreplication repair factors. Furthermore, our findings indicate that an intact F-box domain, acting as an SCF ubiquitin ligase, is required for the DNA damage-induced degradation of hFBH1 itself. Overall, our findings suggest that the hFBH1 helicase is a functional human orthologue of budding yeast Srs2 that also possesses self-regulation properties necessary to execute its recombination functions.


Journal of Biological Chemistry | 2011

TRIM32 Protein Sensitizes Cells to Tumor Necrosis Factor (TNFα)-induced Apoptosis via Its RING Domain-dependent E3 Ligase Activity against X-linked Inhibitor of Apoptosis (XIAP)

Yeung Sook Ryu; Younglang Lee; Keun Woo Lee; Chae Young Hwang; Jin-Soo Maeng; Jeong-Hoon Kim; Yeon-Soo Seo; Kwan-Hee You; Byeongwoon Song; Ki-Sun Kwon

TRIM32, which belongs to the tripartite motif (TRIM) protein family, has the RING finger, B-box, and coiled-coil domain structures common to this protein family, along with an additional NHL domain at the C terminus. TRIM32 reportedly functions as an E3 ligase for actin, a protein inhibitor of activated STAT y (PIASy), dysbindin, and c-Myc, and it has been associated with diseases such as muscular dystrophy and epithelial carcinogenesis. Here, we identify a new substrate of TRIM32 and propose a mechanism through which TRIM32 might regulate apoptosis. Our overexpression and knockdown experiments demonstrate that TRIM32 sensitizes cells to TNFα-induced apoptosis. The RING domain is necessary for this pro-apoptotic function of TRM32 as well as being responsible for its E3 ligase activity. TRIM32 colocalizes and directly interacts with X-linked inhibitor of apoptosis (XIAP), a well known cancer therapeutic target, through its coiled-coil and NHL domains. TRIM32 overexpression enhances XIAP ubiquitination and subsequent proteasome-mediated degradation, whereas TRIM32 knockdown has the opposite effect, indicating that XIAP is a substrate of TRIM32. In vitro reconstitution assay reveals that XIAP is directly ubiquitinated by TRIM32. Our novel results collectively suggest that TRIM32 sensitizes TNFα-induced apoptosis by antagonizing XIAP, an anti-apoptotic downstream effector of TNFα signaling. This function may be associated with TRIM32-mediated tumor suppressive mechanism.

Collaboration


Dive into the Yeon-Soo Seo's collaboration.

Top Co-Authors

Avatar

Jeong-Hoon Kim

Korea Research Institute of Bioscience and Biotechnology

View shared research outputs
Top Co-Authors

Avatar

Young-Hoon Kang

Daegu Gyeongbuk Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Jerard Hurwitz

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Do Hyung Kim

University of Minnesota

View shared research outputs
Researchain Logo
Decentralizing Knowledge