Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yeong-Gon Choi is active.

Publication


Featured researches published by Yeong-Gon Choi.


CNS Neuroscience & Therapeutics | 2012

Acupuncture Stimulation on GB34 Activates Neural Responses Associated with Parkinson's Disease

Sujung Yeo; Sabina Lim; Il-Hwan Choe; Yeong-Gon Choi; Kyung-Cheon Chung; Geon-Ho Jahng; Sung-Hoon Kim

Parkinsons disease (PD) is a degenerative brain disorder that is caused by neural defects in the substantia nigra. Numerous studies have reported that acupuncture treatment on GB34 (Yanglingquan) leads to significant improvements in patients with PD and in PD animal models. Studies using functional magnetic resonance imaging (fMRI) have shown that patients with PD, compared to healthy participants, have lower neural responses in extensive brain regions including the putamen, thalamus, and the supplementary motor area.


Neuroscience Letters | 2009

Acupuncture inhibits ferric iron deposition and ferritin-heavy chain reduction in an MPTP-induced parkinsonism model

Yeong-Gon Choi; Jae-Hyun Park; Sabina Lim

This study investigated the effect of acupuncture on iron-related oxidative damage in a mouse model designed as a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced parkinsonism model. To generate the chronic parkinsonism model, mice were intraperitoneally injected with MPTP (20mg/kg, one daily injection) for 30 days and acupuncture was performed at acupoints LR3 (Taichong) and GB34 (Yanglingquan) at 48h intervals. Acupuncture inhibited decreases in the immunoreactivities of tyrosine hydroxylase (TH) and dopamine transporter (DAT) that occurred as a result of MPTP neurotoxicity. The presence of ferric iron (Fe(3+)), but not ferrous iron (Fe(2+)), was strongly increased in the substantia nigra (SN) as a result of chronic loading of MPTP, whereas the ferritin-heavy chain (F-H) was significantly decreased. However, acupuncture treatment inhibited the increase in ferric iron and the decrease in the F-H that was induced by MPTP. Additionally, treatment with MPTP and acupuncture caused no changes in the presence of ferrous iron and ferritin-light chain (F-L) as a result of the treatments. The mRNA of F-H was also not affected. These results suggest that acupuncture may inhibit iron-related oxidative damage and may prevent the deleterious alteration of iron metabolism in the MPTP model.


Journal of Natural Medicines | 2013

Moutan Cortex Radicis inhibits inflammatory changes of gene expression in lipopolysaccharide-stimulated gingival fibroblasts

Cheol-Sang Yun; Yeong-Gon Choi; Mi-Young Jeong; Je-Hyun Lee; Sabina Lim

Moutan Cortex Radicis (MCR), the root bark of Paeonia suffruticosa Andrews (Paeoniaceae), is found in the traditional Chinese medicinal formulae which were used to treat periodontal diseases. This study investigated the changes in gene expression by MCR treatment when stimulated with lipopolysaccharide (LPS) in cultured human gingival fibroblasts (HGFs). A genome-wide expression GeneChip was used for the gene array analysis, and real-time reverse transcription polymerase chain reaction (RT-PCR) analysis was also performed to confirm the gene expression. It was shown that 42 of the 643 genes up-regulated by LPS, when compared to the control, were down-regulated by the MCR treatment. Of these 42 genes, the inflammation and immune response-related genes were especially noted, which indicates that MCR inhibits the induction of inflammation by LPS stimulation. In addition, 33 of the 519 genes down-regulated by LPS, when compared to the control, were up-regulated by the MCR treatment. The expression patterns of some representative genes by real-time RT-PCR correlated with those of the genes shown in the microarray. In addition, the MCR extract contained paeonol and paeoniflorin, which are known to have the anti-inflammatory effect as the major phenolic components of MCR. This study showed that the MCR extract could comprehensively inhibit a wide variety of activations of inflammation-related genes, which may be due to paeonol and paeoniflorin. It is, thus, suggested that MCR may be applied to alleviate the inflammation of periodontal diseases.


Biochimie | 2010

Nɛ-(carboxymethyl)lysine linkage to α-synuclein and involvement of advanced glycation end products in α-synuclein deposits in an MPTP-intoxicated mouse model☆

Yeong-Gon Choi; Sabina Lim

This study investigated the involvement of advanced glycation end products (AGEs) that may be nonenzymatically linked to α-synuclein accumulation in the chronic 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced C57BL/6 mouse model of parkinsonism. MPTP (20 mg/kg) was intraperitoneally administrated once daily for 30 days to the MPTP group while a saline only solution was administered to the control group. Results show that the immunoreactivities of the tyrosine hydroxylase and dopamine transporter significantly decreased in the striatum and the substantia nigra (SN) in the MPTP model compared to the subjects in the control group. α-synuclein was co-localized with N(ɛ)-(carboxymethyl)lysine (CML) and N(ɛ)-(carboxyethyl)lysine (CEL), which are well-known AGEs, in tyrosine hydroxylase-positive dopaminergic neurons in the MPTP brains. α-synuclein was also shown to be deposited in the CD11b-positive activated microglia. Some AGEs-modified proteins (CML-, CEL-, pentosidine-, or pyrraline-modified proteins) and an oligomeric form of α-synuclein appear to have almost the same molecular weight, specifically between 50 and 75 kDa; in addition, these formations were more strongly deposited in the SN region of the MPTP brains than in the control brains. Moreover, the oligomeric form of α-synuclein was modified with CML in the SNs of both the control and MPTP brains. This study, for the first time, shows that chronic dopaminergic neurodegeneration by MPTP can lead to the depositing of an oligomeric form of α-synuclein, CML-linked α-synuclein, and CEL-, pentosidine-, or pyrraline-linked proteins between 50 and 75 kDa. It is thus suggested that CML, especially a CML-linked α-synuclein oligomer between 50 and 75 kDa, may be, at least in part, involved in the aggregation of the α-synuclein induced by MPTP intoxication.


Gene | 2011

Changes of gene expression profiles in the cervical spinal cord by acupuncture in an MPTP-intoxicated mouse model: Microarray analysis

Yeong-Gon Choi; Sujung Yeo; Yeon-Mi Hong; Sung-Hoon Kim; Sabina Lim

It has been shown that acupuncture at acupoints GB34 and LR3 inhibits the degeneration of nigrostriatal neurons in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of Parkinsons disease. The degeneration of spinal cord was reported to be induced in the MPTP-treated pre-symptomatic mouse. In this study, the gene expression profile changes following acupuncture at the acupoints were investigated in the cervical spinal cord of an MPTP-induced parkinsonism model using a whole transcript array (Affymetrix GeneChip mouse gene 1.0 ST array). It was shown that 8 of the probes up-regulated in MPTP, as compared to the control, were down-regulated after acupuncture at the acupoints. Of these 8 probes, 6 probes (4 annotated genes in 6 probes: Ctla2a, EG383229, Ppbp and Ube2l6) were exclusively down-regulated by acupuncture at the specific acupoints except for 2 probes as these 2 probes were commonly down-regulated by acupuncture at both the acupoints and the non-acupoints. In addition, 11 of the probes down-regulated in MPTP, as compared to the control, were up-regulated by acupuncture at the acupoints. Of these 11 probes, 10 probes (5 annotated genes in 10 probes: EG665033, ENSMUSG00000055323, Obox6, Pbp2 and Tmem150) were exclusively up-regulated by acupuncture at the specific acupoints except for the Fut11 because the Fut11 was commonly up-regulated by acupuncture at both the acupoints and the non-acupoints. The expression levels of the representative genes in the microarray were validated by real-time RT-PCR. These data suggest that the expression of these exclusively regulated 16 probes (9 genes) may be, at least in part, affected by acupuncture at the acupoints in the cervical spinal cord which can be damaged by MPTP intoxication.


Gene | 2013

Neuroprotective changes of thalamic degeneration-related gene expression by acupuncture in an MPTP mouse model of parkinsonism: Microarray analysis

Sujung Yeo; Yeong-Gon Choi; Yeon-Mi Hong; Sabina Lim

Acupuncture stimulations at GB34 and LR3 inhibit the reduction of tyrosine hydroxylase in the nigrostriatal dopaminergic neurons in the parkinsonism animal models. Especially, behavioral tests showed that acupuncture stimulations improved the motor dysfunction in a previous study by almost 87.7%. The thalamus is a crucial area for the motor circuit and has been identified as one of the most markedly damaged areas in Parkinsons disease (PD), so acupuncture stimulations might also have an effect on the thalamic damage. In this study, gene expression changes following acupuncture at the acupoints were investigated in the thalamus of a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced parkinsonism model using a whole transcript array. It was confirmed that acupuncture at these acupoints could inhibit the decrease of tyrosine hydroxylase in the thalamic regions of the MPTP model, while acupuncture at the non-acupoints could not suppress this decrease by its level shown in the acupoints. GeneChip gene array analysis showed that 18 (5 annotated genes: Dnase1l2, Dusp4, Mafg, Ndph and Pgm5) of the probes down-regulated in MPTP, as compared to the control, were exclusively up-regulated by acupuncture at the acupoints, but not at the non-acupoints. In addition, 14 (3 annotated genes; Serinc2, Sp2 and Ucp2) of the probes up-regulated in MPTP, as compared to the control, were exclusively down-regulated by acupuncture at the acupoints, but not at the non-acupoints. The expression levels of the representative genes in the microarray were validated by real-time RT-PCR. These results suggest that the 32 probes (8 annotated genes) which are affected by MPTP and acupuncture may be responsible for exerting the inhibitory effect of acupuncture in the thalamus which can be damaged by MPTP intoxication.


Journal of Ethnopharmacology | 2011

Protective changes of inflammation-related gene expression by the leaves of Eriobotrya japonica in the LPS-stimulated human gingival fibroblast: microarray analysis.

Yeong-Gon Choi; Yeong-Hwan Seok; Sujung Yeo; Mi-Young Jeong; Sabina Lim

ETHNOPHARMACOLOGICAL RELEVANCE The leaf of Eriobotrya japonica (Ej) has been used for a long time as an oriental medicine to treat pulmonary inflammatory diseases. This study investigated the gene expression changes by lipopolysaccharide (LPS) stimulation in the cultured human gingival fibroblast and the anti-inflammatory changes of the genes by the leaves of Ej when challenged with LPS using a microarray chip. MATERIALS AND METHODS A whole transcript genechip (Affymetrix genechip human gene 1.0 ST array) was used. The expression patterns of the significant genes were confirmed by real-time RT-PCR analysis. RESULTS The gene array analysis showed that 60 of the 325 genes up-regulated by the LPS when compared to the control were down-regulated by the Ej treatment. Of these 60 genes, the inflammation- and immune response-related genes were especially noted, which indicates that Ej inhibits the induction of the inflammation through LPS stimulation. In addition, 78 of the 158 genes down-regulated by the LPS when compared to the control were up-regulated by the Ej treatment. The regulatory patterns of the representative genes in the real-time RT-PCR correlated with those of the genes shown in the microarray. The Ej extract also inhibited the production of IL-6, TNF-α, and nitrite in the LPS-stimulated cells. CONCLUSIONS This study showed that the extract of Ej leaves could be used to inhibit the activation of a wide variety of the inflammation-related genes and the inflammatory mediators. It is suggested that the extract of Ej leaves may be applied to alleviate the inflammation of periodontal diseases.


Genetics and Molecular Biology | 2015

Neuroprotective changes in degeneration-related gene expression in the substantia nigra following acupuncture in an MPTP mouse model of Parkinsonism: Microarray analysis

Sujung Yeo; Keon Sang An; Yeon-Mi Hong; Yeong-Gon Choi; Bruce R. Rosen; Sung-Hoon Kim; Sabina Lim

Parkinson’s disease (PD) is a neurodegenerative disorder characterized by the death of dopamine-generating cells in the substantia nigra (SN). Acupuncture stimulation results in an enhanced survival of dopaminergic neurons in the SN in Parkinsonism animal models. The present study investigated changes in gene expression profiles measured using whole transcript array in the SN region related to the inhibitory effects of acupuncture in a chronic 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) Parkinsonism model. In this model, acupuncture stimulation at GB34 and LR3 attenuated the decrease in tyrosine hydroxylase in the SN region; stimulation at non-acupoints did not suppress this decrease. Gene array analysis revealed that 22 (10 annotated genes: Cdh1, Itih2, Mpzl2, Rdh9, Serping1, Slc6a13, Slc6a20a, Slc6a4, Tph2, and Ucma) probes that were up-regulated in MPTP animals relative to controls were exclusively down-regulated by acupuncture stimulation. In addition, 17 (two annotated genes: 4921530L21Rik and Gm13931) probes that were down-regulated in MPTP animals compared to controls were exclusively up-regulated by acupuncture stimulation. These findings indicate that the 39 probes (12 annotated genes) affected by MPTP and acupuncture may be responsible for the inhibitory effects of acupuncture on degeneration-related gene expression in the SN following damage induced by MPTP intoxication.


Archives of Pharmacal Research | 2012

Anti-inflammatory Changes of Gene Expression by Artemisia iwayomogi in the LPS-stimulated Human Gingival Fibroblast: Microarray Analysis

Yeong-Gon Choi; Sujung Yeo; Sung-Hoon Kim; Sabina Lim

The leaves and stems of Asteraceae Artemisia iwayomogi (Ai) for a long time have been known to inhibit inflammatory cytokine production and allergic reactions, and have been used to treat liver diseases. It needs to be elucidated in terms of global gene expression whether Ai has an influence as an anti-inflammatory agent on the cultured human gingival fibroblast stimulated with lipopolysaccharide (LPS). This study investigated the anti-inflammatory changes of the genes by Ai using the Affymetrix genechip human gene 1.0 ST array when the cultured human gingival fibroblast was treated with LPS. It was observed that the inflammation- and immune response-related genes were activated by LPS challenge in the cultured human gingival fibroblast. The array analysis showed that 65 of the 344 genes up-regulated by LPS stimulation, when compared to the control, were down-regulated by the Ai treatment. A number of inflammation- and immune response-related genes of the 65 genes were found. In addition, 78 of the 164 genes down-regulated by the LPS, when compared to the control, were up-regulated by the Ai treatment. The regulatory patterns of the representative genes were correlated with the real-time RT-PCR analysis. The Ai extract and its specific components, scopolin and scopoletin, significantly hindered the production of inflammatory mediators such as IL-6, TNF-α and nitrite in the LPS-challenged fibroblast. This study suggests that Ai can comprehensively inhibit the activation of the inflammation- and immune response-related genes and the inflammatory mediators in the human gingival fibroblast.


Oxidative Medicine and Cellular Longevity | 2017

The Short Isoform of DNAJB6 Protects against 1-Methyl-4-phenylpridinium Ion-Induced Apoptosis in LN18 Cells via Inhibiting Both ROS Formation and Mitochondrial Membrane Potential Loss

Yeon-Mi Hong; Yohan Hong; Yeong-Gon Choi; Sujung Yeo; Soo Hee Jin; Sae-Won Lee; Backil Sung; Sook-Hyun Lee; Hyejin Jung; Sabina Lim

In a previous study, we found that the short isoform of DNAJB6 (DNAJB6(S)) had been decreased in the striatum of a mouse model of Parkinsons disease (PD) induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). DNAJB6, one of the heat shock proteins, has been implicated in the pathogenesis of PD. In this study, we explored the cytoprotective effect of DNAJB6(S) against 1-methyl-4-phenylpyridinium ion- (MPP+-) induced apoptosis and the underlying molecular mechanisms in cultured LN18 cells from astrocytic tumors. We observed that MPP+ significantly reduced the cell viability and induced apoptosis in LN18 glioblastoma cells. DNAJB6(S) protected LN18 cells against MPP+-induced apoptosis not only by suppressing Bax cleavage but also by inhibiting a series of apoptotic events including loss of mitochondrial membrane potential, increase in intracellular reactive oxygen species, and activation of caspase-9. These observations suggest that the cytoprotective effects of DNAJB6(S) may be mediated, at least in part, by the mitochondrial pathway of apoptosis.

Collaboration


Dive into the Yeong-Gon Choi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge