Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yeunkum Lee is active.

Publication


Featured researches published by Yeunkum Lee.


Neuroscience | 2010

BETA AMYLOID-INDEPENDENT ROLE OF AMYLOID PRECURSOR PROTEIN IN GENERATION AND MAINTENANCE OF DENDRITIC SPINES

Kea Joo Lee; Charbel E.-H. Moussa; Yeunkum Lee; Youme Sung; Brian W. Howell; Raymond Scott Turner; Daniel T. S. Pak; Hyang-Sook Hoe

Synapse loss induced by amyloid beta (Abeta) is thought to be a primary contributor to cognitive decline in Alzheimers disease. Abeta is generated by proteolysis of amyloid precursor protein (APP), a synaptic receptor whose physiological function remains unclear. In the present study, we investigated the role of APP in dendritic spine formation, which is known to be important for learning and memory. We found that overexpression of APP increased spine number, whereas knockdown of APP reduced spine density in cultured hippocampal neurons. This spine-promoting effect of APP required both the extracellular and intracellular domains of APP, and was accompanied by specific upregulation of the GluR2, but not the GluR1, subunit of AMPA receptors. In an in vivo experiment, we found that cortical layers II/III and hippocampal CA1 pyramidal neurons in 1 year-old APP-deficient mice had fewer and shorter dendritic spines than wild-type littermates. In contrast, transgenic mice overexpressing mutant APP exhibited increased spine density compared to control animals, though only at a young age prior to overaccumulation of soluble amyloid. Additionally, increased glutamate synthesis was observed in young APP transgenic brains, whereas glutamate levels were decreased and GABA levels were increased in APP-deficient mice. These results demonstrate that APP is important for promoting spine formation and is required for proper spine development.


Neuron | 2011

Requirement for Plk2 in orchestrated ras and rap signaling, homeostatic structural plasticity, and memory.

Kea Joo Lee; Yeunkum Lee; Aaron M. Rozeboom; Ji-Yun Lee; Noriko Udagawa; Hyang-Sook Hoe; Daniel T. S. Pak

Ras and Rap small GTPases are important for synaptic plasticity and memory. However, their roles in homeostatic plasticity are unknown. Here, we report that polo-like kinase 2 (Plk2), a homeostatic suppressor of overexcitation, governs the activity of Ras and Rap via coordination of their regulatory proteins. Plk2 directs elimination of Ras activator RasGRF1 and Rap inhibitor SPAR via phosphorylation-dependent ubiquitin-proteasome degradation. Conversely, Plk2 phosphorylation stimulates Ras inhibitor SynGAP and Rap activator PDZGEF1. These Ras/Rap regulators perform complementary functions to downregulate dendritic spines and AMPA receptors following elevated activity, and their collective regulation by Plk2 profoundly stimulates Rap and suppresses Ras. Furthermore, perturbation of Plk2 disrupts Ras and Rap signaling, prevents homeostatic shrinkage and loss of dendritic spines, and impairs proper memory formation. Our study demonstrates a critical role of Plk2 in the synchronized tuning of Ras and Rap and underscores the functional importance of this regulation in homeostatic synaptic plasticity.


Experimental Neurobiology | 2016

Bipolar Disorder Associated microRNA, miR-1908-5p, Regulates the Expression of Genes Functioning in Neuronal Glutamatergic Synapses

Yoonhee Kim; Yinhua Zhang; Kaifang Pang; Hyojin Kang; Heejoo Park; Yeunkum Lee; Bokyoung Lee; Heon Jeong Lee; Won Ki Kim; Dongho Geum; Kihoon Han

Bipolar disorder (BD), characterized by recurrent mood swings between depression and mania, is a highly heritable and devastating mental illness with poorly defined pathophysiology. Recent genome-wide molecular genetic studies have identified several protein-coding genes and microRNAs (miRNAs) significantly associated with BD. Notably, some of the proteins expressed from BD-associated genes function in neuronal synapses, suggesting that abnormalities in synaptic function could be one of the key pathogenic mechanisms of BD. In contrast, however, the role of BD-associated miRNAs in disease pathogenesis remains largely unknown, mainly because of a lack of understanding about their target mRNAs and pathways in neurons. To address this problem, in this study, we focused on a recently identified BD-associated but uncharacterized miRNA, miR-1908-5p. We identified and validated its novel target genes including DLGAP4, GRIN1, STX1A, CLSTN1 and GRM4, which all function in neuronal glutamatergic synapses. Moreover, bioinformatic analyses of human brain expression profiles revealed that the expression levels of miR-1908-5p and its synaptic target genes show an inverse-correlation in many brain regions. In our preliminary experiments, the expression of miR-1908-5p was increased after chronic treatment with valproate but not lithium in control human neural progenitor cells. In contrast, it was decreased by valproate in neural progenitor cells derived from dermal fibroblasts of a BD subject. Together, our results provide new insights into the potential role of miR-1908-5p in the pathogenesis of BD and also propose a hypothesis that neuronal synapses could be a key converging pathway of some BD-associated protein-coding genes and miRNAs.


Scientific Reports | 2015

Mice lacking the PSD-95-interacting E3 ligase, Dorfin/Rnf19a, display reduced adult neurogenesis, enhanced long-term potentiation, and impaired contextual fear conditioning

Hanwool Park; Jinhee Yang; Ryunhee Kim; Yan Li; Yeunkum Lee; Chungwoo Lee; Jong-Il Park; Dongmin Lee; Hyun Kim; Eunjoon Kim

Protein ubiquitination has a significant influence on diverse aspects of neuronal development and function. Dorfin, also known as Rnf19a, is a RING finger E3 ubiquitin ligase implicated in amyotrophic lateral sclerosis and Parkinson’s disease, but its in vivo functions have not been explored. We report here that Dorfin is a novel binding partner of the excitatory postsynaptic scaffolding protein PSD-95. Dorfin-mutant (Dorfin−/−) mice show reduced adult neurogenesis and enhanced long-term potentiation in the hippocampal dentate gyrus, but normal long-term potentiation in the CA1 region. Behaviorally, Dorfin−/− mice show impaired contextual fear conditioning, but normal levels of cued fear conditioning, fear extinction, spatial learning and memory, object recognition memory, spatial working memory, and pattern separation. Using a proteomic approach, we also identify a number of proteins whose ubiquitination levels are decreased in the Dorfin−/− brain. These results suggest that Dorfin may regulate adult neurogenesis, synaptic plasticity, and contextual fear memory.


IEEE Microwave and Wireless Components Letters | 2011

A 325 GHz InP HBT Differential-Mode Amplifier

J. B. Hacker; Yeunkum Lee; Hyun-Tae Park; Jae Sung Rieh; M. J. Kim

An MMIC amplifier operating at the highest reported frequency up to date for indium-phosphide double-heterojunction bipolar (DHBT) transistor technology is presented. The amplifier chain consists of seven unit-cell stages that contain differential-pair common-base HBTs and compact inverted microstrip matching networks. Amplifier operation in differential mode generates a virtual RF ground at a convenient location inside the unit cell. The measurements at 325 GHz show a small signal gain of 25 dB and a maximum output power of -1.5 dBm. An amplifier gain of greater than 20 dB is observed over 60 GHz bandwidth extending from 285 to 345 GHz.


Frontiers in Molecular Neuroscience | 2017

Integrative Analysis of Brain Region-specific Shank3 Interactomes for Understanding the Heterogeneity of Neuronal Pathophysiology Related to SHANK3 Mutations

Yeunkum Lee; Hyojin Kang; Bokyoung Lee; Yinhua Zhang; Yoonhee Kim; Shinhyun Kim; Won Ki Kim; Kihoon Han

Recent molecular genetic studies have identified 100s of risk genes for various neurodevelopmental and neuropsychiatric disorders. As the number of risk genes increases, it is becoming clear that different mutations of a single gene could cause different types of disorders. One of the best examples of such a gene is SHANK3, which encodes a core scaffold protein of the neuronal excitatory post-synapse. Deletions, duplications, and point mutations of SHANK3 are associated with autism spectrum disorders, intellectual disability, schizophrenia, bipolar disorder, and attention deficit hyperactivity disorder. Nevertheless, how the different mutations of SHANK3 can lead to such phenotypic diversity remains largely unknown. In this study, we investigated whether Shank3 could form protein complexes in a brain region-specific manner, which might contribute to the heterogeneity of neuronal pathophysiology caused by SHANK3 mutations. To test this, we generated a medial prefrontal cortex (mPFC) Shank3 in vivo interactome consisting of 211 proteins, and compared this protein list with a Shank3 interactome previously generated from mixed hippocampal and striatal (HP+STR) tissues. Unexpectedly, we found that only 47 proteins (about 20%) were common between the two interactomes, while 164 and 208 proteins were specifically identified in the mPFC and HP+STR interactomes, respectively. Each of the mPFC- and HP+STR-specific Shank3 interactomes represents a highly interconnected network. Upon comparing the brain region-enriched proteomes, we found that the large difference between the mPFC and HP+STR Shank3 interactomes could not be explained by differential protein expression profiles among the brain regions. Importantly, bioinformatic pathway analysis revealed that the representative biological functions of the mPFC- and HP+STR-specific Shank3 interactomes were different, suggesting that these interactors could mediate the brain region-specific functions of Shank3. Meanwhile, the same analysis on the common Shank3 interactors, including Homer and GKAP/SAPAP proteins, suggested that they could mainly function as scaffolding proteins at the post-synaptic density. Lastly, we found that the mPFC- and HP+STR-specific Shank3 interactomes contained a significant number of proteins associated with neurodevelopmental and neuropsychiatric disorders. These results suggest that Shank3 can form protein complexes in a brain region-specific manner, which might contribute to the pathophysiological and phenotypic diversity of disorders related to SHANK3 mutations.


Frontiers in Molecular Neuroscience | 2017

Striatal Transcriptome and Interactome Analysis of Shank3-overexpressing Mice Reveals the Connectivity between Shank3 and mTORC1 Signaling

Yeunkum Lee; Sun-Gyun Kim; Bokyoung Lee; Yinhua Zhang; Yoonhee Kim; Shinhyun Kim; Eunjoon Kim; Hyojin Kang; Kihoon Han

Mania causes symptoms of hyperactivity, impulsivity, elevated mood, reduced anxiety and decreased need for sleep, which suggests that the dysfunction of the striatum, a critical component of the brain motor and reward system, can be causally associated with mania. However, detailed molecular pathophysiology underlying the striatal dysfunction in mania remains largely unknown. In this study, we aimed to identify the molecular pathways showing alterations in the striatum of SH3 and multiple ankyrin repeat domains 3 (Shank3)-overexpressing transgenic (TG) mice that display manic-like behaviors. The results of transcriptome analysis suggested that mammalian target of rapamycin complex 1 (mTORC1) signaling may be the primary molecular signature altered in the Shank3 TG striatum. Indeed, we found that striatal mTORC1 activity, as measured by mTOR S2448 phosphorylation, was significantly decreased in the Shank3 TG mice compared to wild-type (WT) mice. To elucidate the potential underlying mechanism, we re-analyzed previously reported protein interactomes, and detected a high connectivity between Shank3 and several upstream regulators of mTORC1, such as tuberous sclerosis 1 (TSC1), TSC2 and Ras homolog enriched in striatum (Rhes), via 94 common interactors that we denominated “Shank3-mTORC1 interactome”. We noticed that, among the 94 common interactors, 11 proteins were related to actin filaments, the level of which was increased in the dorsal striatum of Shank3 TG mice. Furthermore, we could co-immunoprecipitate Shank3, Rhes and Wiskott-Aldrich syndrome protein family verprolin-homologous protein 1 (WAVE1) proteins from the striatal lysate of Shank3 TG mice. By comparing with the gene sets of psychiatric disorders, we also observed that the 94 proteins of Shank3-mTORC1 interactome were significantly associated with bipolar disorder (BD). Altogether, our results suggest a protein interaction-mediated connectivity between Shank3 and certain upstream regulators of mTORC1 that might contribute to the abnormal striatal mTORC1 activity and to the manic-like behaviors of Shank3 TG mice.


Nature Neuroscience | 2016

Synaptic adhesion molecule IgSF11 regulates synaptic transmission and plasticity

Seil Jang; Daeyoung Oh; Yeunkum Lee; Eric Hosy; Hyewon Shin; Christoph Van Riesen; Daniel J. Whitcomb; Julia M. Warburton; Jihoon Jo; Doyoun Kim; Sun-Gyun Kim; Seung Min Um; Seok-Kyu Kwon; Myoung-Hwan Kim; Junyeop Daniel Roh; Jooyeon Woo; Heejung Jun; Dongmin Lee; Won Mah; Hyun Kim; Bong-Kiun Kaang; Kwangwook Cho; Jeong-Seop Rhee; Daniel Choquet; Eunjoon Kim

Synaptic adhesion molecules regulate synapse development and plasticity through mechanisms that include trans-synaptic adhesion and recruitment of diverse synaptic proteins. We found that the immunoglobulin superfamily member 11 (IgSF11), a homophilic adhesion molecule that preferentially expressed in the brain, is a dual-binding partner of the postsynaptic scaffolding protein PSD-95 and AMPA glutamate receptors (AMPARs). IgSF11 required PSD-95 binding for its excitatory synaptic localization. In addition, IgSF11 stabilized synaptic AMPARs, as determined by IgSF11 knockdown–induced suppression of AMPAR-mediated synaptic transmission and increased surface mobility of AMPARs, measured by high-throughput, single-molecule tracking. IgSF11 deletion in mice led to the suppression of AMPAR-mediated synaptic transmission in the dentate gyrus and long-term potentiation in the CA1 region of the hippocampus. IgSF11 did not regulate the functional characteristics of AMPARs, including desensitization, deactivation or recovery. These results suggest that IgSF11 regulates excitatory synaptic transmission and plasticity through its tripartite interactions with PSD-95 and AMPARs.


Journal of Biological Chemistry | 2016

IQ Motif and SEC7 Domain-containing Protein 3 (IQSEC3) Interacts with Gephyrin to Promote Inhibitory Synapse Formation.

Ji Won Um; Gayoung Choii; Dongseok Park; Dong-Wook Kim; Sangmin Jeon; Hyeyeon Kang; Takuma Mori; Theofilos Papadopoulos; Taesun Yoo; Yeunkum Lee; Eunjoon Kim; Katsuhiko Tabuchi; Jaewon Ko

Gephyrin is a central scaffold protein that mediates development, function, and plasticity of mammalian inhibitory synapses by interacting with various inhibitory synaptic proteins. Here, we show that IQSEC3, a guanine nucleotide exchange factor for ARF6, directly interacts with gephyrin, an interaction that is critical for the inhibitory synapse localization of IQSEC3. Overexpression of IQSEC3 increases inhibitory, but not excitatory, synapse density in a guanine nucleotide exchange factor activity-dependent manner. Conversely, knockdown of IQSEC3 decreases size of gephyrin cluster without altering gephyrin puncta density. Collectively, these data reveal that IQSEC3 acts together with gephyrin to regulate inhibitory synapse development.


Neuroscience Letters | 2017

Age-dependent decrease of GAD65/67 mRNAs but normal densities of GABAergic interneurons in the brain regions of Shank3-overexpressing manic mouse model

Bokyoung Lee; Yinhua Zhang; Yoonhee Kim; Shinhyun Kim; Yeunkum Lee; Kihoon Han

Dysfunction of inhibitory GABAergic interneurons is considered a major pathophysiological feature of various neurodevelopmental and neuropsychiatric disorders. The variants of SHANK3 gene, encoding a core scaffold protein of the excitatory postsynapse, have been associated with numerous brain disorders. It has been suggested that abnormalities of GABAergic interneurons could contribute to the SHANK3-related disorders, but the limitation of these studies is that they used mainly Shank3 knock-out mice. Notably, Shank3-overexpressing transgenic mice, modeling human hyperkinetic disorders, also show reduced inhibitory synaptic transmission, abnormal electroencephalography, and spontaneous seizures. However, it has not been investigated whether these phenotypes of Shank3 transgenic mice are associated with GABAergic interneuron dysfunction, or solely due to the cell-autonomous postsynaptic changes of principal neurons. To address this issue, we investigated the densities of parvalbumin- and somatostatin-positive interneurons, and the mRNA and protein levels of GAD65/67 GABA-synthesizing enzymes in the medial prefrontal cortex, striatum, and hippocampus of adult Shank3 transgenic mice. We found no significant difference in the measurements performed on wild-type versus Shank3 transgenic mice, except for the decreased GAD65 or GAD67 mRNAs in these brain regions. Interestingly, only GAD65 mRNA was decreased in the hippocampus, but not mPFC and striatum, of juvenile Shank3 transgenic mice which, unlike the adult mice, did not show behavioral hyperactivity. Together, our results suggest age-dependent decrease of GAD65/67 mRNAs but normal densities of certain GABAergic interneurons in the Shank3 transgenic mice.

Collaboration


Dive into the Yeunkum Lee's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hyojin Kang

Korea Institute of Science and Technology Information

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge