Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yi-an Bi is active.

Publication


Featured researches published by Yi-an Bi.


Drug Metabolism and Disposition | 2006

Use of Cryopreserved Human Hepatocytes in Sandwich Culture to Measure Hepatobiliary Transport

Yi-an Bi; Diana C Kazolias; David B. Duignan

Fresh hepatocytes cultured in a sandwich configuration allow for the development of intact bile canaliculi and the ability to measure hepatic uptake and biliary clearance. A disadvantage of this model is its dependence upon hepatocytes from fresh tissue. Therefore, the ability to use cryopreserved human hepatocytes in this model would be a great advantage. Multiple variables were tested, and the recommended conditions for culturing cryopreserved human hepatocytes in a sandwich configuration in 24-well plates are as follows: BioCoat plates, a cell density of 0.35 × 106 cells/well in 500 μl, an overlay of Matrigel and InVitroGRO media. These conditions resulted in good hepatocyte morphology and the formation of distinct bile canaliculi. The function of multiple uptake and efflux transporters was tested in multiple lots of cryopreserved and fresh human hepatocytes. For taurocholate [Na+ taurocholate cotransporting polypeptide/organic anion transporting polypeptide (OATP) uptake/bile salt export pump efflux], the average apparent uptake, apparent intrinsic biliary clearance, and biliary excretion index among five cryopreserved hepatocyte lots was high, ranging from 11 to 17 pmol/min/mg protein, 5.8 to 10 μl/min/mg protein, and 41 to 63%, respectively. The corresponding values for digoxin (OATP-8 uptake/multidrug resistance protein 1 efflux) were 0.69 to 1.5 pmol/min/mg protein, 0.60 to 1.5 μl/min/mg protein, and 37 to 63%. Both substrates exhibited similar results when fresh human hepatocytes were used. In addition, substrates of breast cancer resistance protein and multidrug resistance-associated protein 2 were also tested in this model, and all cryopreserved lots showed functional transport of these substrates. The use of cryopreserved human hepatocytes in 24-well sandwich culture to form intact bile canaliculi and to exhibit functional uptake and efflux transport has been successfully demonstrated.


Drug Metabolism and Disposition | 2012

Mechanistic pharmacokinetic modeling for the prediction of transporter-mediated disposition in humans from sandwich culture human hepatocyte data

Hannah M. Jones; Hugh A. Barton; Yurong Lai; Yi-an Bi; Emi Kimoto; Sarah Kempshall; Tate Sc; Ayman El-Kattan; J. B. Houston; Aleksandra Galetin; Katherine S. Fenner

With efforts to reduce cytochrome P450-mediated clearance (CL) during the early stages of drug discovery, transporter-mediated CL mechanisms are becoming more prevalent. However, the prediction of plasma concentration-time profiles for such compounds using physiologically based pharmacokinetic (PBPK) modeling is far less established in comparison with that for compounds with passively mediated pharmacokinetics (PK). In this study, we have assessed the predictability of human PK for seven organic anion-transporting polypeptide (OATP) substrates (pravastatin, cerivastatin, bosentan, fluvastatin, rosuvastatin, valsartan, and repaglinide) for which clinical intravenous data were available. In vitro data generated from the sandwich culture human hepatocyte system were simultaneously fit to estimate parameters describing both uptake and biliary efflux. Use of scaled active uptake, passive distribution, and biliary efflux parameters as inputs into a PBPK model resulted in the overprediction of exposure for all seven drugs investigated, with the exception of pravastatin. Therefore, fitting of in vivo data for each individual drug in the dataset was performed to establish empirical scaling factors to accurately capture their plasma concentration-time profiles. Overall, active uptake and biliary efflux were under- and overpredicted, leading to average empirical scaling factors of 58 and 0.061, respectively; passive diffusion required no scaling factor. This study illustrates the mechanistic and model-driven application of in vitro uptake and efflux data for human PK prediction for OATP substrates. A particular advantage is the ability to capture the multiphasic plasma concentration-time profiles for such compounds using only preclinical data. A prediction strategy for novel OATP substrates is discussed.


Molecular Pharmaceutics | 2009

Quantitative expression profile of hepatobiliary transporters in sandwich cultured rat and human hepatocytes.

Na Li; Yi-an Bi; David B. Duignan; Yurong Lai

As sandwich cultured (SC) hepatocytes can repolarize to form bile canalicular networks, allowing active excretion of compounds in a vectorial manner, the model has been widely used for assessing the transporter related complexity of ADME/tox issues. A lack of quantitative information on transporter expression during cell culture has made in vitro to in vivo extrapolation of hepatobiliary transport difficult. In the present study, using our newly developed LC-MS/MS absolute quantitative methods, we determined the quantitative expression profile of three biliary transporters in SC rat and human hepatocytes. A significant shift of hepatobiliary transporter proteins was observed both in human and rat sandwich cultures. A decrease of BSEP/Bsep protein and an increase of BCRP/Bcrp protein were detected in both rat and human hepatocytes over time in culture. Interestingly, Mrp2 in rat hepatocytes was significantly diminished, while MRP2 constantly increased in human hepatocytes during the cell culture. Consequently, the interspecies difference between rat and human in absolute amount of MRP2/Mrp2 was minimized over time in culture. Following the sandwich culture, the species difference of hepatobiliary transporter protein between human and rat at day 5 post SC was diminished (MRP2/Mrp2), identical (BSEP/Bsep) or reversed (BCRP/Bcrp), compared to the in vivo situation. In addition, the absolute protein amount of BCRP/Bcrp or MRP2/Mrp2 was proportionally correlated with the intrinsic biliary clearance estimated in various lots of SC rat and human hepatocytes. The results revealed that absolute protein amount is a key determinant for hepatobiliary clearance and could provide fundamental support on extrapolation of biliary secretion from in vitro to in vivo.


Molecular Pharmaceutics | 2012

Characterization of organic anion transporting polypeptide (OATP) expression and its functional contribution to the uptake of substrates in human hepatocytes.

Emi Kimoto; Kenta Yoshida; Larissa M. Balogh; Yi-an Bi; Kazuya Maeda; Ayman El-Kattan; Yuichi Sugiyama; Yurong Lai

Since the substrate specificities of OATP1B1, 1B3, and 2B1 are broad and overlapping, the contribution of each isoform to the overall hepatic uptake is of concern when assessing transporter-mediated drug-drug interactions (DDIs) or genetic polymorphism impact in the clinic. Herein, we quantitatively measured OATP proteins in cryopreserved hepatocytes, sandwich-cultured human hepatocytes (SCHH), and the liver, and examined the relationship with functional uptake of OATP substrates in an effort to identify the OATP isoform(s) contributing to the hepatic uptake of pitavastatin. The modulation of OATP expression in SCHH was found to be lot-dependent. However, OATP protein measurements averaged from 5 lots of SCHH were comparable to that of suspended hepatocytes. All three OATP transporters in suspended hepatocytes and SCHH were significantly lower than those in the liver. In SCHH, the uptake of CCK-8 and pravastatin was found to be associated with the expression of OATP1B3 and OATP1B1, respectively. In suspended hepatocytes, OATP1B1 appeared to show a positive trend with respect to the uptake of pitavastatin, which suggests a selective contribution of OATP1B1 to pitavastatin transport and thus an OATP quantitative protein expression-activity relationship. While the passive diffusion of rosuvastatin in SCHH was consistent across hepatocyte lots, the passive diffusion of pitavastatin varied over a broad range (>4-fold) in suspended hepatocytes and was inversely correlated with transporter-mediated uptake, presumably due to cell membrane alterations imparted by cryopreservation. Collectively, SCHH maintains OATP protein expression and membrane integrity and, if feasible when considering research goals, would be considered a superior tool for the characterization of in vitro transport parameters without the complication of membrane leakage.


Toxicological Sciences | 2009

Role of Hepatic Transporters in the Disposition and Hepatotoxicity of a HER2 Tyrosine Kinase Inhibitor CP-724,714

Bo Feng; Jinghai J. Xu; Yi-an Bi; Rouchelle Mireles; Ralph E. Davidson; David B. Duignan; Scott D. Campbell; Vsevolod E. Kostrubsky; Margaret C. Dunn; Arthur R. Smith; Huifen F. Wang

CP-724,714, a potent and selective orally active HER2 tyrosine kinase inhibitor, was discontinued from clinical development due to unexpected hepatotoxicity in cancer patients. Based on the clinical manifestation of the toxicity, CP-724,714 likely exerted its hepatotoxicity via both hepatocellular injury and hepatobiliary cholestatic mechanisms. The direct cytotoxic effect, hepatobiliary disposition of CP-724,714, and its inhibition of active canalicular transport of bile constituents were evaluated in established human hepatocyte models and in vitro transporter systems. CP-724,714 exhibited direct cytotoxicity using human hepatocyte imaging assay technology with mitochondria identified as a candidate organelle for its off-target toxicity. Additionally, CP-724,714 was rapidly taken up into human hepatocytes, partially via an active transport process, with an uptake clearance approximately fourfold higher than efflux clearance. The major human hepatic uptake transporter, OATP1B1, and efflux transporters, multidrug resistance protein 1 (MDR1) and breast cancer resistance protein, were involved in hepatobiliary clearance of CP-724,714. Furthermore, CP-724,714 displayed a concentration-dependent inhibition of cholyl-lysyl fluorescein and taurocholate (TC) efflux into canaliculi in cryopreserved and fresh cultured human hepatocytes, respectively. Likewise, CP-724,714 inhibited TC transport in membrane vesicles expressing human bile salt export pump with an IC(50) of 16 microM. Finally, CP-724,714 inhibited the major efflux transporter in bile canaliculi, MDR1, with an IC(50) of approximately 28 microM. These results suggest that inhibition of hepatic efflux transporters contributed to hepatic accumulation of drug and bile constituents leading to hepatocellular injury and hepatobiliary cholestasis. This study provides likely explanations for clinically observed adverse liver effects of CP-724,714.


European Journal of Medicinal Chemistry | 2012

Mechanistic insights from comparing intrinsic clearance values between human liver microsomes and hepatocytes to guide drug design

Li Di; Christopher E. Keefer; Dennis O. Scott; Timothy J. Strelevitz; George Chang; Yi-an Bi; Yurong Lai; Jonathon Duckworth; Katherine S. Fenner; Matthew D. Troutman; R. Scott Obach

Metabolic stability of drug candidates are often determined in both liver microsome and hepatocyte assays. Comparison of intrinsic clearance values between the two assays provides additional information to guide drug design. Intrinsic clearance values from human liver microsomes and hepatocytes were compared for a set of commercial drugs with known metabolic pathways and transporter characteristics. The results showed that for compounds that were predominately metabolized by CYP mediated mechanisms, the intrinsic clearance values from the two assays were comparable. For compounds with non-CYP pathways, such as UGT and AO, intrinsic clearance was faster in hepatocytes than in microsomes. Substrates of uptake or efflux transporters in this study did not have significant differences of intrinsic clearance between microsomes and hepatocytes, when uptake into the hepatocytes was not the rate-limiting step. When hepatic uptake was rate limiting, intrinsic clearance in microsomes was faster than that in hepatocytes, which was more prevalent for compounds with rapid metabolism. Low passive permeability can limit the exposure to drug molecules to the metabolizing enzymes in the hepatocytes in relationship to the rate of metabolism. The faster the rate of metabolism, the higher permeability is needed for molecule to enter the cells and not becoming rate-limiting. The findings are very useful for drug discovery programs to gain additional insights on mechanistic information to help drug design without added experiments. Follow-up studies can then be designed to address specific questions.


Drug Metabolism and Disposition | 2012

In Vitro Evaluation of Hepatic Transporter-Mediated Clinical Drug-Drug Interactions: Hepatocyte Model Optimization and Retrospective Investigation

Yi-an Bi; Emi Kimoto; Samantha Sevidal; Hannah M. Jones; Hugh A. Barton; Sarah Kempshall; Kevin M. Whalen; Chengjie Ji; Katherine S. Fenner; Ayman El-Kattan; Yurong Lai

To assess the feasibility of using sandwich-cultured human hepatocytes (SCHHs) as a model to characterize transport kinetics for in vivo pharmacokinetic prediction, the expression of organic anion-transporting polypeptide (OATP) proteins in SCHHs, along with biliary efflux transporters, was confirmed quantitatively by liquid chromatography-tandem mass spectrometry. Rifamycin SV (Rif SV), which was shown to completely block the function of OATP transporters, was selected as an inhibitor to assess the initial rates of active uptake. The optimized SCHH model was applied in a retrospective investigation of compounds with known clinically significant OATP-mediated uptake and was applied further to explore drug-drug interactions (DDIs). Greater than 50% inhibition of active uptake by Rif SV was found to be associated with clinically significant OATP-mediated DDIs. We propose that the in vitro active uptake value therefore could serve as a cutoff for class 3 and 4 compounds of the Biopharmaceutics Drug Disposition Classification System, which could be integrated into the International Transporter Consortium decision tree recommendations to trigger clinical evaluations for potential DDI risks. Furthermore, the kinetics of in vitro hepatobiliary transport obtained from SCHHs, along with protein expression scaling factors, offer an opportunity to predict complex in vivo processes using mathematical models, such as physiologically based pharmacokinetics models.


Drug Metabolism and Disposition | 2012

A Novel Relay Method for Determining Low-Clearance Values

Li Di; Patrick Trapa; Obach Rs; Karen Atkinson; Yi-an Bi; Angela Wolford; Beijing Tan; Thomas S. McDonald; Yurong Lai; Larry M. Tremaine

A novel relay method has been developed using cryopreserved human hepatocytes to measure intrinsic clearance of low-clearance compounds. The relay method involved transferring the supernatant from hepatocyte incubations to freshly thawed hepatocytes at the end of the 4-h incubation to prolong the exposure time to active enzymes in hepatocytes. An accumulative incubation time of 20 h or longer in hepatoctyes can be achieved using the method. The relay method was validated using seven commercial drugs (diazepam, disopyramide, theophylline, timolol, tolbutamide, S-warfarin, and zolmitriptan) that were metabolized by various cytochrome P450s with low human in vivo intrinsic clearance at approximately 2 to 15 ml · min−1 · kg−1. The results showed that the relay method produced excellent predictions of human in vivo clearance. The difference between in vitro and in vivo intrinsic clearance was within 2-fold for most compounds, which is similar to the standard prediction accuracy for moderate to high clearance compounds using hepatocytes. The relay method is a straightforward, relatively low cost, and easy-to-use new tool to address the challenges of low clearance in drug discovery and development.


Biopharmaceutics & Drug Disposition | 2013

Quantitative assessment of the contribution of sodium-dependent taurocholate co-transporting polypeptide (NTCP) to the hepatic uptake of rosuvastatin, pitavastatin and fluvastatin

Yi-an Bi; Xi Qiu; Charles J. Rotter; Emi Kimoto; Mary Piotrowski; Manthena V. Varma; Ayman F. EI-Kattan; Yurong Lai

Hepatic uptake transport is often the rate‐determining step in the systemic clearance of drugs. The ability to predict uptake clearance and to determine the contribution of individual transporters to overall hepatic uptake is therefore critical in assessing the potential pharmacokinetic and pharmacodynamic variability associated with drug–drug interactions and pharmacogenetics. The present study revisited the interaction of statin drugs, including pitavastatin, fluvastatin and rosuvastatin, with the sodium‐dependent taurocholate co‐transporting polypeptide (NTCP) using gene transfected cell models. In addition, the uptake clearance and the contribution of NTCP to the overall hepatic uptake were assessed using in vitro hepatocyte models. Then NTCP protein expression was measured by a targeted proteomics transporter quantification method to confirm the presence and stability of NTCP expression in suspended and cultured hepatocyte models. It was concluded that NTCP‐mediated uptake contributed significantly to active hepatic uptake in hepatocyte models for all three statins. However, the contribution of NTCP‐mediated uptake to the overall active hepatic uptake was compound‐dependent and varied from about 24% to 45%. Understanding the contribution of individual transporter proteins to the overall hepatic uptake and its functional variability when other active hepatic uptake pathways are interrupted could improve the current prediction practice used to assess the pharmacokinetic variability due to drug–drug interactions, pharmacogenetics and physiopathological conditions in humans. Copyright


Drug Metabolism and Disposition | 2013

Quantitative Prediction of Repaglinide-Rifampicin Complex Drug Interactions Using Dynamic and Static Mechanistic Models: Delineating Differential CYP3A4 Induction and OATP1B1 Inhibition Potential of Rifampicin

Manthena V. Varma; Jian Lin; Yi-an Bi; Charles J. Rotter; Odette A. Fahmi; Justine L. Lam; Ayman El-Kattan; Theunis C. Goosen; Yurong Lai

Repaglinide is mainly metabolized by cytochrome P450 enzymes CYP2C8 and CYP3A4, and it is also a substrate to a hepatic uptake transporter, organic anion transporting polypeptide (OATP)1B1. The purpose of this study is to predict the dosing time–dependent pharmacokinetic interactions of repaglinide with rifampicin, using mechanistic models. In vitro hepatic transport of repaglinide, characterized using sandwich-cultured human hepatocytes, and intrinsic metabolic parameters were used to build a dynamic whole-body physiologically-based pharmacokinetic (PBPK) model. The PBPK model adequately described repaglinide plasma concentration-time profiles and successfully predicted area under the plasma concentration-time curve ratios of repaglinide (within ± 25% error), dosed (staggered 0–24 hours) after rifampicin treatment when primarily considering induction of CYP3A4 and reversible inhibition of OATP1B1 by rifampicin. Further, a static mechanistic “extended net-effect” model incorporating transport and metabolic disposition parameters of repaglinide and interaction potency of rifampicin was devised. Predictions based on the static model are similar to those observed in the clinic (average error ∼19%) and to those based on the PBPK model. Both the models suggested that the combined effect of increased gut extraction and decreased hepatic uptake caused minimal repaglinide systemic exposure change when repaglinide is dosed simultaneously or 1 hour after the rifampicin dose. On the other hand, isolated induction effect as a result of temporal separation of the two drugs translated to an approximate 5-fold reduction in repaglinide systemic exposure. In conclusion, both dynamic and static mechanistic models are instrumental in delineating the quantitative contribution of transport and metabolism in the dosing time–dependent repaglinide-rifampicin interactions.

Collaboration


Dive into the Yi-an Bi's collaboration.

Researchain Logo
Decentralizing Knowledge