Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yurong Lai is active.

Publication


Featured researches published by Yurong Lai.


Journal of Medicinal Chemistry | 2012

Classification of inhibitors of hepatic organic anion transporting polypeptides (OATPs): influence of protein expression on drug-drug interactions.

Maria Karlgren; Anna Vildhede; Ulf Norinder; Jacek R. Wisniewski; Emi Kimoto; Yurong Lai; Ulf Haglund; Per Artursson

The hepatic organic anion transporting polypeptides (OATPs) influence the pharmacokinetics of several drug classes and are involved in many clinical drug–drug interactions. Predicting potential interactions with OATPs is, therefore, of value. Here, we developed in vitro and in silico models for identification and prediction of specific and general inhibitors of OATP1B1, OATP1B3, and OATP2B1. The maximal transport activity (MTA) of each OATP in human liver was predicted from transport kinetics and protein quantification. We then used MTA to predict the effects of a subset of inhibitors on atorvastatin uptake in vivo. Using a data set of 225 drug-like compounds, 91 OATP inhibitors were identified. In silico models indicated that lipophilicity and polar surface area are key molecular features of OATP inhibition. MTA predictions identified OATP1B1 and OATP1B3 as major determinants of atorvastatin uptake in vivo. The relative contributions to overall hepatic uptake varied with isoform specificities of the inhibitors.


Journal of Pharmaceutical Sciences | 2011

Development of a new permeability assay using low‐efflux MDCKII cells

Li Di; Carrie Whitney-Pickett; John P. Umland; Xun Zhang; David F. Gebhard; Yurong Lai; James Federico; Ralph E. Davidson; Russ Smith; Eric L. Reyner; Caroline Lee; Bo Feng; Charles J. Rotter; Manthena V. Varma; Sarah Kempshall; Katherine S. Fenner; Ayman El-Kattan; Theodore E. Liston; Matthew D. Troutman

Permeability is an important property of drug candidates. The Madin-Darby canine kidney cell line (MDCK) permeability assay is widely used and the primary concern of using MDCK cells is the presence of endogenous transporters of nonhuman origin. The canine P-glycoprotein (Pgp) can interfere with permeability and transporter studies, leading to less reliable data. A new cell line, MDCKII-LE (low efflux), has been developed by selecting a subpopulation of low-efflux cells from MDCKII-WT using an iterative fluorescence-activated cell sorting technique with calcein-AM as a Pgp and efflux substrate. MDCKII-LE cells are a subpopulation of MDCKII cells with over 200-fold lower canine Pgp mRNA level and fivefold lower protein level than MDCKII-WT. MDCKII-LE cells showed less functional efflux activity than MDCKII-WT based on efflux ratios. Notably, MDCKII-MDR1 showed about 1.5-fold decreased expression of endogenous canine Pgp, suggesting that using the net flux ratio might not completely cancel out the background endogenous transporter activities. MDCKII-LE cells offer clear advantages over the MDCKII-WT by providing less efflux transporter background signals and minimizing interference from canine Pgp. The MDCKII-LE apparent permeability values well differentiates compounds from high to medium/low human intestinal absorption and can be used for Biopharmaceutical Classification System. The MDCKII-LE permeability assay (4-in-1 cassette dosing) is high throughput with good precision, reproducibility, robustness, and cost-effective.


Drug Metabolism and Disposition | 2012

Mechanistic pharmacokinetic modeling for the prediction of transporter-mediated disposition in humans from sandwich culture human hepatocyte data

Hannah M. Jones; Hugh A. Barton; Yurong Lai; Yi-an Bi; Emi Kimoto; Sarah Kempshall; Tate Sc; Ayman El-Kattan; J. B. Houston; Aleksandra Galetin; Katherine S. Fenner

With efforts to reduce cytochrome P450-mediated clearance (CL) during the early stages of drug discovery, transporter-mediated CL mechanisms are becoming more prevalent. However, the prediction of plasma concentration-time profiles for such compounds using physiologically based pharmacokinetic (PBPK) modeling is far less established in comparison with that for compounds with passively mediated pharmacokinetics (PK). In this study, we have assessed the predictability of human PK for seven organic anion-transporting polypeptide (OATP) substrates (pravastatin, cerivastatin, bosentan, fluvastatin, rosuvastatin, valsartan, and repaglinide) for which clinical intravenous data were available. In vitro data generated from the sandwich culture human hepatocyte system were simultaneously fit to estimate parameters describing both uptake and biliary efflux. Use of scaled active uptake, passive distribution, and biliary efflux parameters as inputs into a PBPK model resulted in the overprediction of exposure for all seven drugs investigated, with the exception of pravastatin. Therefore, fitting of in vivo data for each individual drug in the dataset was performed to establish empirical scaling factors to accurately capture their plasma concentration-time profiles. Overall, active uptake and biliary efflux were under- and overpredicted, leading to average empirical scaling factors of 58 and 0.061, respectively; passive diffusion required no scaling factor. This study illustrates the mechanistic and model-driven application of in vitro uptake and efflux data for human PK prediction for OATP substrates. A particular advantage is the ability to capture the multiphasic plasma concentration-time profiles for such compounds using only preclinical data. A prediction strategy for novel OATP substrates is discussed.


Clinical Pharmacology & Therapeutics | 2013

Intracellular Drug Concentrations and Transporters: Measurement, Modeling, and Implications for the Liver

Xiaoyan Chu; Ken Korzekwa; R. Elsby; K. Fenner; Aleksandra Galetin; Yurong Lai; Pär Matsson; A. Moss; Swati Nagar; G. R. Rosania; J. P. F. Bai; Joseph W. Polli; Yuichi Sugiyama; Kim L. R. Brouwer

Intracellular concentrations of drugs and metabolites are often important determinants of efficacy, toxicity, and drug interactions. Hepatic drug distribution can be affected by many factors, including physicochemical properties, uptake/efflux transporters, protein binding, organelle sequestration, and metabolism. This white paper highlights determinants of hepatocyte drug/metabolite concentrations and provides an update on model systems, methods, and modeling/simulation approaches used to quantitatively assess hepatocellular concentrations of molecules. The critical scientific gaps and future research directions in this field are discussed.


Clinical Pharmacology & Therapeutics | 2013

In vitro methods to support transporter evaluation in drug discovery and development

Kim L. R. Brouwer; Dietrich Keppler; Keith Hoffmaster; D A J Bow; Y Cheng; Yurong Lai; J E Palm; Bruno Stieger; Raymond Evers

This white paper addresses current approaches and knowledge gaps concerning methods to assess the role of transport proteins in drug/metabolite disposition in humans. The discussion focuses on in vitro tools to address key questions in drug development, including vesicle‐ and cell‐based systems. How these methods can be used to assess the liability of compounds for transporter‐based drug–drug interactions (DDIs) in vivo is also explored. Existing challenges and approaches to examine the involvement of transporters in drug disposition are discussed.


Molecular Pharmaceutics | 2014

Protein abundance of clinically relevant multidrug transporters along the entire length of the human intestine

Marek Drozdzik; Christian Gröer; Jette Penski; Joanna Lapczuk; Marek Ostrowski; Yurong Lai; Bhagwat Prasad; Jashvant D. Unadkat; Werner Siegmund; Stefan Oswald

Intestinal transporters are crucial determinants in the oral absorption of many drugs. We therefore studied the mRNA expression (N = 33) and absolute protein content (N = 10) of clinically relevant transporters in healthy epithelium of the duodenum, the proximal and distal jejunum and ileum, and the ascending, transversal, descending, and sigmoidal colon of six organ donors (24-54 years). In the small intestine, the abundance of nearly all studied proteins ranged between 0.2 and 1.6 pmol/mg with the exception of those of OCT3 (<0.1 pmol/mg) and PEPT1 (2.6-4.9 pmol/mg) that accounted for ∼50% of all measured transporters. OATP1A2 was not detected in any intestinal segment. ABCB1, ABCG2, PEPT1, and ASBT were significantly more abundant in jejunum and ileum than in colon. In contrast to this, the level of expression of ABCC2, ABCC3, and OCT3 was found to be highest in colon. Site-dependent differences in the levels of gene and protein expression were observed for ABCB1 and ASBT. Significant correlations between mRNA and protein levels have been found for ABCG2, ASBT, OCT3, and PEPT1 in the small intestine. Our data provide further physiological pieces of the puzzle required to predict intestinal drug absorption in humans.


Pharmaceutical Research | 2013

Mechanistic Modeling to Predict the Transporter- and Enzyme-Mediated Drug-Drug Interactions of Repaglinide

Manthena V. Varma; Yurong Lai; Emi Kimoto; Theunis C. Goosen; Ayman El-Kattan; Vikas Kumar

ABSTRACTPurposeQuantitative prediction of complex drug-drug interactions (DDIs) is challenging. Repaglinide is mainly metabolized by cytochrome-P-450 (CYP)2C8 and CYP3A4, and is also a substrate of organic anion transporting polypeptide (OATP)1B1. The purpose is to develop a physiologically based pharmacokinetic (PBPK) model to predict the pharmacokinetics and DDIs of repaglinide.MethodsIn vitro hepatic transport of repaglinide, gemfibrozil and gemfibrozil 1-O-β-glucuronide was characterized using sandwich-culture human hepatocytes. A PBPK model, implemented in Simcyp (Sheffield, UK), was developed utilizing in vitro transport and metabolic clearance data.ResultsIn vitro studies suggested significant active hepatic uptake of repaglinide. Mechanistic model adequately described repaglinide pharmacokinetics, and successfully predicted DDIs with several OATP1B1 and CYP3A4 inhibitors (<10% error). Furthermore, repaglinide-gemfibrozil interaction at therapeutic dose was closely predicted using in vitro fraction metabolism for CYP2C8 (0.71), when primarily considering reversible inhibition of OATP1B1 and mechanism-based inactivation of CYP2C8 by gemfibrozil and gemfibrozil 1-O-β-glucuronide.ConclusionsThis study demonstrated that hepatic uptake is rate-determining in the systemic clearance of repaglinide. The model quantitatively predicted several repaglinide DDIs, including the complex interactions with gemfibrozil. Both OATP1B1 and CYP2C8 inhibition contribute significantly to repaglinide-gemfibrozil interaction, and need to be considered for quantitative rationalization of DDIs with either drug.


Journal of Pharmaceutical Sciences | 2013

Interindividual Variability in the Hepatic Expression of the Human Breast Cancer Resistance Protein (BCRP/ABCG2): Effect of Age, Sex, and Genotype

Bhagwat Prasad; Yurong Lai; Yvonne S. Lin; Jashvant D. Unadkat

Breast cancer resistance protein (BCRP), an efflux transporter expressed at the bile canalicular membrane, is responsible for the biliary clearance of many drugs. Data on the interindividual variability of hepatic BCRP expression are needed for in vitro to in vivo extrapolation of the biliary clearance of a BCRP substrate drug. Therefore, we measured the expression of BCRP in human livers (n = 65) by liquid chromatography coupled with tandem mass spectrometry. A calibration curve was generated using a synthetic signature peptide (SSLLDVLAAR) as the calibrator and the corresponding synthetic stable isotope-labeled peptide as the internal standard. The analytical method was accurate and precise. BCRP expression in 50 livers, where it was measurable, was 137.9 ± 42.1 atmol/µg of membrane protein (range 69.7-246.4 atmol/µg of membrane protein). BCRP expression was not associated with age (7-70 years), sex, or mRNA expression. BCRP expression in livers with the variant C421A (rs2231142) allele (14 heterozygotes, two homozygotes; among these, eight livers were below lower limit of quantification) was significantly lower than that in the wild-type livers (p < 0.002). Integration of these data with data on the hepatic expression of other transporters will allow refinement of physiologically based pharmacokinetic models to predict the pharmacokinetics, hepatic exposure, and drug-drug interactions of drugs (and/or their metabolites).


Molecular Pharmaceutics | 2009

Quantitative expression profile of hepatobiliary transporters in sandwich cultured rat and human hepatocytes.

Na Li; Yi-an Bi; David B. Duignan; Yurong Lai

As sandwich cultured (SC) hepatocytes can repolarize to form bile canalicular networks, allowing active excretion of compounds in a vectorial manner, the model has been widely used for assessing the transporter related complexity of ADME/tox issues. A lack of quantitative information on transporter expression during cell culture has made in vitro to in vivo extrapolation of hepatobiliary transport difficult. In the present study, using our newly developed LC-MS/MS absolute quantitative methods, we determined the quantitative expression profile of three biliary transporters in SC rat and human hepatocytes. A significant shift of hepatobiliary transporter proteins was observed both in human and rat sandwich cultures. A decrease of BSEP/Bsep protein and an increase of BCRP/Bcrp protein were detected in both rat and human hepatocytes over time in culture. Interestingly, Mrp2 in rat hepatocytes was significantly diminished, while MRP2 constantly increased in human hepatocytes during the cell culture. Consequently, the interspecies difference between rat and human in absolute amount of MRP2/Mrp2 was minimized over time in culture. Following the sandwich culture, the species difference of hepatobiliary transporter protein between human and rat at day 5 post SC was diminished (MRP2/Mrp2), identical (BSEP/Bsep) or reversed (BCRP/Bcrp), compared to the in vivo situation. In addition, the absolute protein amount of BCRP/Bcrp or MRP2/Mrp2 was proportionally correlated with the intrinsic biliary clearance estimated in various lots of SC rat and human hepatocytes. The results revealed that absolute protein amount is a key determinant for hepatobiliary clearance and could provide fundamental support on extrapolation of biliary secretion from in vitro to in vivo.


Journal of Pharmaceutical and Biomedical Analysis | 2013

LC–MS/MS-based quantification of clinically relevant intestinal uptake and efflux transporter proteins

Christian Gröer; S. Brück; Yurong Lai; A. Paulick; A. Busemann; Claus-Dieter Heidecke; Werner Siegmund; Stefan Oswald

Multidrug transporter proteins are crucial determinants in the pharmacokinetics of many drugs. To evaluate their impact on intestinal drug absorption, we developed and validated quantification methods for 10 uptake transporters (OATP1A2, OATP2B1, PEPT1, ASBT, OCT1, OCT3) and efflux transporters (ABCB1, ABCC2, ABCC3, ABCG2) that have been reported to be expressed and to be of clinical relevance in the human intestine. Quantification was performed by targeted liquid chromatography with tandem mass spectrometry (LC-MS/MS)-based quantification of proteospecific peptides after tryptic digestion using stable isotope labeled internal standard peptides. The chromatography of the respective peptides was performed by gradient elution using a reversed phase (C18) column (Kinetex(®), 100 × 3.0 mm, 2.6 μm) and 0.1% formic acid (FA) and acetonitrile with 0.1% FA as mobile phases at a flow rate of 0.5 ml/min. The MS/MS detection was done in the positive multiple reaction monitoring (MRM) mode by monitoring in each case three mass transitions for the transporter-derived peptides and the internal standard peptides. The assays were validated with respect to specificity, linearity (0.1-25 nM), within-day and between-day accuracy and precision as well as stability according to current bioanalytical guidelines. Finally, the developed methods were used to determine the transporter protein content in human intestinal tissue (jejunum and ileum). The methods were shown to possess sufficient specificity, sensitivity, accuracy, precision and stability to measure transporter proteins in the human intestine.

Collaboration


Dive into the Yurong Lai's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge