Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yi Lai is active.

Publication


Featured researches published by Yi Lai.


Journal of Clinical Investigation | 2009

Dystrophins carrying spectrin-like repeats 16 and 17 anchor nNOS to the sarcolemma and enhance exercise performance in a mouse model of muscular dystrophy

Yi Lai; Gail D. Thomas; Yongping Yue; Hsiao T. Yang; Dejia Li; Chun Long; Luke M. Judge; Brian Bostick; Jeffrey S. Chamberlain; Ronald L. Terjung; Dongsheng Duan

Sarcolemma-associated neuronal NOS (nNOS) plays a critical role in normal muscle physiology. In Duchenne muscular dystrophy (DMD), the loss of sarcolemmal nNOS leads to functional ischemia and muscle damage; however, the mechanism of nNOS subcellular localization remains incompletely understood. According to the prevailing model, nNOS is recruited to the sarcolemma by syntrophin, and in DMD this localization is altered. Intriguingly, the presence of syntrophin on the membrane does not always restore sarcolemmal nNOS. Thus, we wished to determine whether dystrophin functions in subcellular localization of nNOS and which regions may be necessary. Using in vivo transfection of dystrophin deletion constructs, we show that sarcolemmal targeting of nNOS was dependent on the spectrin-like repeats 16 and 17 (R16/17) within the rod domain. Treatment of mdx mice (a DMD model) with R16/17-containing synthetic dystrophin genes effectively ameliorated histological muscle pathology and improved muscle strength as well as exercise performance. Furthermore, sarcolemma-targeted nNOS attenuated alpha-adrenergic vasoconstriction in contracting muscle and improved muscle perfusion during exercise as measured by Doppler and microsphere circulation. In summary, we have identified the dystrophin spectrin-like repeats 16 and 17 as a novel scaffold for nNOS sarcolemmal targeting. These data suggest that muscular dystrophy gene therapies based on R16/17-containing dystrophins may yield better clinical outcomes than the current therapies.


Nature Biotechnology | 2005

Efficient in vivo gene expression by trans-splicing adeno-associated viral vectors

Yi Lai; Yongping Yue; Mingju Liu; Arkasubhra Ghosh; John F. Engelhardt; Jeffrey S. Chamberlain; Dongsheng Duan

Although adeno-associated virus (AAV)-mediated gene therapy has been hindered by the small viral packaging capacity of the vector, trans-splicing AAV vectors are able to package twice the size of the vector genome. Unfortunately, the efficiency of current trans-splicing vectors is very low. Here we show that rational design of the gene splitting site has a profound influence on trans-splicing vector-mediated gene expression. Using mRNA accumulation as a guide, we generated a set of efficient trans-splicing vectors and achieved widespread expression of the 6-kb ΔH2-R19 mini-dystrophin gene in skeletal muscle of mdx mice, a model for Duchenne muscular dystrophy. The dystrophic phenotype was ameliorated in both adult and aged mice. This demonstrates the use of trans-splicing vectors to efficiently express a large therapeutic structural protein. This strategy should be applicable to other large therapeutic genes or large transcription regulatory elements.


Journal of Cell Science | 2010

Sarcolemmal nNOS anchoring reveals a qualitative difference between dystrophin and utrophin.

Dejia Li; Akshay Bareja; Luke M. Judge; Yongping Yue; Yi Lai; Rebecca J. Fairclough; Kay E. Davies; Jeffrey S. Chamberlain; Dongsheng Duan

Duchenne muscular dystrophy (DMD) is a lethal muscle disease caused by dystrophin deficiency. In normal muscle, dystrophin helps maintain sarcolemmal stability. Dystrophin also recruits neuronal nitric oxide synthase (nNOS) to the sarcolemma. Failure to anchor nNOS to the membrane leads to functional ischemia and aggravates muscle disease in DMD. Over the past two decades, a great variety of therapeutic modalities have been explored to treat DMD. A particularly attractive approach is to increase utrophin expression. Utrophin shares considerable sequence, structural and functional similarity with dystrophin. Here, we test the hypothesis that utrophin also brings nNOS to the sarcolemma. Full-length utrophin cDNA was expressed in dystrophin-deficient mdx mice by gutted adenovirus or via transgenic overexpression. Subcellular nNOS localization was determined by immunofluorescence staining, in situ nNOS activity staining and microsomal preparation western blot. Despite supra-physiological utrophin expression, we did not detect nNOS at the sarcolemma. Furthermore, transgenic utrophin overexpression failed to protect mdx muscle from exercise-associated injury. Our results suggest that full-length utrophin cannot anchor nNOS to the sarcolemma. This finding might have important implications for the development of utrophin-based DMD therapies.


Human Gene Therapy | 2008

Adeno-Associated Virus Serotype-9 Microdystrophin Gene Therapy Ameliorates Electrocardiographic Abnormalities in mdx Mice

Brian Bostick; Yongping Yue; Yi Lai; Chun Long; Dejia Li; Dongsheng Duan

Adeno-associated virus (AAV)-mediated microdystrophin gene therapy holds great promise for treating Duchenne muscular dystrophy (DMD). Previous studies have revealed excellent skeletal muscle protection. Cardiac muscle is also compromised in DMD patients. Here we show that a single intravenous injection of AAV serotype-9 (AAV-9) microdystrophin vector efficiently transduced the entire heart in neonatal mdx mice, a dystrophin-deficient mouse DMD model. Furthermore, microdystrophin therapy normalized the heart rate, PR interval, and QT interval. The cardiomyopathy index was also significantly improved in treated mdx mice. Our study demonstrates for the first time that AAV microdystrophin gene therapy can ameliorate the electrocardiographic abnormalities in a mouse model for DMD.


The Journal of Pathology | 2011

Nitrosative stress elicited by nNOSµ delocalization inhibits muscle force in dystrophin-null mice†

Dejia Li; Yongping Yue; Yi Lai; Chady H. Hakim; Dongsheng Duan

The mechanism of force reduction is not completely understood in Duchenne muscular dystrophy (DMD), a dystrophin‐deficient lethal disease. Nitric oxide regulates muscle force. Interestingly, neuronal nitric oxide synthase µ (nNOSµ), a major source of muscle nitric oxide, is lost from the sarcolemma in DMD muscle. We hypothesize that nNOSµ delocalization contributes to force reduction in DMD. To test this hypothesis, we generated dystrophin/nNOSµ double knockout mice. Genetic elimination of nNOSµ significantly enhanced force in dystrophin‐null mice. Pharmacological inhibition of nNOS yielded similar results. To further test our hypothesis, we studied δ‐sarcoglycan‐null mice, a model of limb‐girdle muscular dystrophy. These mice had minimal sarcolemmal nNOSµ delocalization and muscle force was less compromised. Annihilation of nNOSµ did not improve their force either. To determine whether nNOSµ delocalization itself inhibited force, we corrected muscle disease in dystrophin‐null mice with micro‐dystrophins that either restored or did not restore sarcolemmal nNOSµ. Similar muscle force was obtained irrespective of nNOSµ localization. Additional studies suggest that nNOSµ delocalization selectively inhibits muscle force in dystrophin‐null mice via nitrosative stress. In summary, we have demonstrated for the first time that nitrosative stress elicited by nNOSµ delocalization is an important mechanism underlying force loss in DMD. Copyright


Proceedings of the National Academy of Sciences of the United States of America | 2013

α2 and α3 helices of dystrophin R16 and R17 frame a microdomain in the α1 helix of dystrophin R17 for neuronal NOS binding

Yi Lai; Junling Zhao; Yongping Yue; Dongsheng Duan

Homologous spectrin-like repeats can mediate specific protein interaction. The underlying mechanism is poorly understood. Dystrophin contains 24 spectrin-like repeats. However, only repeats 16 and 17 (R16/17) are required for anchoring neuronal NOS (nNOS) to the sarcolemma. Through an adeno-associated virus-based in vivo binding assay, we found that membrane expression of correctly phased R16/17 was sufficient to recruit nNOS to the sarcolemma in mouse muscle. Utrophin R15/16 is homologous to dystrophin R16/17. Substitution of dystrophin R16/17 microdomains with the corresponding regions of utrophin R15/16 suggests that the nNOS binding site is located in a 10-residue fragment in dystrophin R17 α1 helix. Interestingly, swapping this microdomain back into utrophin did not convey the nNOS binding activity. To identify other structural features that are required for nNOS interaction, we replaced an individual α-helix of dystrophin R16/17 with an equivalent α-helix from another dystrophin repeat. In vitro study with yeast two-hybrid suggests that most α-helices of R16/17, except for the R17 α1 helix, were dispensable for nNOS interaction. Surprisingly, in vivo binding assay showed that α2 and α3 helices of both R16 and R17 were essential for nNOS binding in muscle. We concluded that a microdomain in the α1 helix of dystrophin R17 binds to nNOS in a way uniquely defined by two pairs of the flanking helices. Our results provide an explanation for how structurally similar spectrin-like repeats in dystrophin display selective interaction with nNOS. The results also open new therapeutic avenues to restore defective nNOS homeostasis in dystrophin-null Duchenne muscular dystrophy.


Journal of Molecular and Cellular Cardiology | 2012

AAV micro-dystrophin gene therapy alleviates stress-induced cardiac death but not myocardial fibrosis in > 21-m-old mdx mice, an end-stage model of Duchenne muscular dystrophy cardiomyopathy

Brian Bostick; Jin-Hong Shin; Yongping Yue; Nalinda B. Wasala; Yi Lai; Dongsheng Duan

Duchenne muscular dystrophy (DMD) is a fatal genetic disease caused by the absence of the sarcolemmal protein dystrophin. Dilated cardiomyopathy leading to heart failure is a significant source of morbidity and mortality in DMD. We recently demonstrated amelioration of DMD heart disease in 16 to 20-m-old dystrophin-null mdx mice using adeno-associated virus (AAV) mediated micro-dystrophin gene therapy. DMD patients show severe heart disease near the end of their life expectancy. Similarly, mdx mice exhibit profoundly worsening heart disease when they reach beyond 21 months of age. To more rigorously test micro-dystrophin therapy, we treated mdx mice that were between 21.2 and 22.7-m-old (average, 22.1 ± 0.2 months; N=8). The ∆R4-23/∆C micro-dystrophin gene was packaged in the cardiotropic AAV-9 virus. 5×10(12) viral genome particles/mouse were delivered to mdx mice via the tail vein. AAV transduction, myocardial fibrosis and heart function were examined 1.7 ± 0.2 months after gene therapy. Efficient micro-dystrophin expression was observed in the myocardium of treated mice. Despite the robust dystrophin expression, myocardial fibrosis was not mitigated. Most hemodynamic parameters were not improved either. However, ECG abnormalities were partially corrected. Importantly, treated mice became more resistant to dobutamine-induced cardiac death. In summary, we have revealed for the first time the potential benefits and limitations of AAV micro-dystrophin therapy in end-stage Duchenne dilated cardiomyopathy. Our findings have important implications for the use of AAV gene therapy in dilated cardiomyopathy and heart failure.


PLOS ONE | 2009

Ectopic Catalase Expression in Mitochondria by Adeno-Associated Virus Enhances Exercise Performance in Mice

Dejia Li; Yi Lai; Yongping Yue; Peter S. Rabinovitch; Chady H. Hakim; Dongsheng Duan

Oxidative stress is thought to compromise muscle contractility. However, administration of generic antioxidants has failed to convincingly improve performance during exhaustive exercise. One possible explanation may relate to the inability of the supplemented antioxidants to effectively eliminate excessive free radicals at the site of generation. Here, we tested whether delivering catalase to the mitochondria, a site of free radical production in contracting muscle, could improve treadmill performance in C57Bl/6 mice. Recombinant adeno-associated virus serotype-9 (AV.RSV.MCAT) was generated to express a mitochondria-targeted catalase gene. AV.RSV.MCAT was delivered to newborn C57Bl/6 mouse circulation at the dose of 1012 vector genome particles per mouse. Three months later, we observed a ∼2 to 10-fold increase of catalase protein and activity in skeletal muscle and the heart. Subcellular fractionation western blot and double immunofluorescence staining confirmed ectopic catalase expression in the mitochondria. Compared with untreated control mice, absolute running distance and body weight normalized running distance were significantly improved in AV.RSV.MCAT infected mice during exhaustive treadmill running. Interestingly, ex vivo contractility of the extensor digitorum longus muscle was not altered. Taken together, we have demonstrated that forced catalase expression in the mitochondria enhances exercise performance. Our result provides a framework for further elucidating the underlying mechanism. It also raises the hope of applying similar strategies to remove excessive, pathogenic free radicals in certain muscle diseases (such as Duchenne muscular dystrophy) and ameliorate muscle disease.


Human Molecular Genetics | 2014

Partial restoration of cardiac function with ΔPDZ nNOS in aged mdx model of Duchenne cardiomyopathy

Yi Lai; Junling Zhao; Yongping Yue; Nalinda B. Wasala; Dongsheng Duan

Transgenic gene deletion/over-expression studies have established the cardioprotective role of neuronal nitric oxide synthase (nNOS). However, it remains unclear whether nNOS-mediated heart protection can be translated to gene therapy. In this study, we generated an adeno-associated virus (AAV) nNOS vector and tested its therapeutic efficacy in the aged mdx model of Duchenne cardiomyopathy. A PDZ domain-deleted nNOS gene (ΔPDZ nNOS) was packaged into tyrosine mutant AAV-9 and delivered to the heart of ~14-month-old female mdx mice, a phenotypic model of Duchenne cardiomyopathy. Seven months later, we observed robust nNOS expression in the myocardium. Supra-physiological ΔPDZ nNOS expression significantly reduced myocardial fibrosis, inflammation and apoptosis. Importantly, electrocardiography and left ventricular hemodynamics were significantly improved in treated mice. Additional studies revealed increased phosphorylation of phospholamban and p70S6K. Collectively, we have demonstrated the therapeutic efficacy of the AAV ΔPDZ nNOS vector in a symptomatic Duchenne cardiomyopathy model. Our results suggest that the cardioprotective role of ΔPDZ nNOS is likely through reduced apoptosis, enhanced phospholamban phosphorylation and improved Akt/mTOR/p70S6K signaling. Our study has opened the door to treat Duchenne cardiomyopathy with ΔPDZ nNOS gene transfer.


Methods of Molecular Biology | 2008

Design of Trans-Splicing Adeno-Associated Viral Vectors for Duchenne Muscular Dystrophy Gene Therapy

Yi Lai; Dejia Li; Yongping Yue; Dongsheng Duan

The development of trans-splicing vectors opens the door for delivering a large therapeutic gene with adeno-associated viral vectors (AAV). One potential application is to deliver the 6 kb mini-dystrophin gene for Duchenne muscular dystrophy (DMD) gene therapy. However, early attempts have been very disappointing because of low transduction efficiency. We have recently identified mRNA accumulation as a critical barrier for the trans-splicing AAV vectors. This barrier can be overcome by rational selection of the gene splitting site. Here we outline a detailed RNase protection assay-based strategy to determine the optimal gene splitting site for the mini-dystrophin gene. We also provide methods to evaluate transduction efficiency of the mini-dystrophin trans-splicing vectors in mdx mouse, a model for DMD.

Collaboration


Dive into the Yi Lai's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dejia Li

University of Missouri

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chun Long

University of Missouri

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mingju Liu

University of Missouri

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge