Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Dejia Li is active.

Publication


Featured researches published by Dejia Li.


Journal of Clinical Investigation | 2009

Dystrophins carrying spectrin-like repeats 16 and 17 anchor nNOS to the sarcolemma and enhance exercise performance in a mouse model of muscular dystrophy

Yi Lai; Gail D. Thomas; Yongping Yue; Hsiao T. Yang; Dejia Li; Chun Long; Luke M. Judge; Brian Bostick; Jeffrey S. Chamberlain; Ronald L. Terjung; Dongsheng Duan

Sarcolemma-associated neuronal NOS (nNOS) plays a critical role in normal muscle physiology. In Duchenne muscular dystrophy (DMD), the loss of sarcolemmal nNOS leads to functional ischemia and muscle damage; however, the mechanism of nNOS subcellular localization remains incompletely understood. According to the prevailing model, nNOS is recruited to the sarcolemma by syntrophin, and in DMD this localization is altered. Intriguingly, the presence of syntrophin on the membrane does not always restore sarcolemmal nNOS. Thus, we wished to determine whether dystrophin functions in subcellular localization of nNOS and which regions may be necessary. Using in vivo transfection of dystrophin deletion constructs, we show that sarcolemmal targeting of nNOS was dependent on the spectrin-like repeats 16 and 17 (R16/17) within the rod domain. Treatment of mdx mice (a DMD model) with R16/17-containing synthetic dystrophin genes effectively ameliorated histological muscle pathology and improved muscle strength as well as exercise performance. Furthermore, sarcolemma-targeted nNOS attenuated alpha-adrenergic vasoconstriction in contracting muscle and improved muscle perfusion during exercise as measured by Doppler and microsphere circulation. In summary, we have identified the dystrophin spectrin-like repeats 16 and 17 as a novel scaffold for nNOS sarcolemmal targeting. These data suggest that muscular dystrophy gene therapies based on R16/17-containing dystrophins may yield better clinical outcomes than the current therapies.


Journal of Cell Science | 2010

Sarcolemmal nNOS anchoring reveals a qualitative difference between dystrophin and utrophin.

Dejia Li; Akshay Bareja; Luke M. Judge; Yongping Yue; Yi Lai; Rebecca J. Fairclough; Kay E. Davies; Jeffrey S. Chamberlain; Dongsheng Duan

Duchenne muscular dystrophy (DMD) is a lethal muscle disease caused by dystrophin deficiency. In normal muscle, dystrophin helps maintain sarcolemmal stability. Dystrophin also recruits neuronal nitric oxide synthase (nNOS) to the sarcolemma. Failure to anchor nNOS to the membrane leads to functional ischemia and aggravates muscle disease in DMD. Over the past two decades, a great variety of therapeutic modalities have been explored to treat DMD. A particularly attractive approach is to increase utrophin expression. Utrophin shares considerable sequence, structural and functional similarity with dystrophin. Here, we test the hypothesis that utrophin also brings nNOS to the sarcolemma. Full-length utrophin cDNA was expressed in dystrophin-deficient mdx mice by gutted adenovirus or via transgenic overexpression. Subcellular nNOS localization was determined by immunofluorescence staining, in situ nNOS activity staining and microsomal preparation western blot. Despite supra-physiological utrophin expression, we did not detect nNOS at the sarcolemma. Furthermore, transgenic utrophin overexpression failed to protect mdx muscle from exercise-associated injury. Our results suggest that full-length utrophin cannot anchor nNOS to the sarcolemma. This finding might have important implications for the development of utrophin-based DMD therapies.


Human Gene Therapy | 2008

Adeno-Associated Virus Serotype-9 Microdystrophin Gene Therapy Ameliorates Electrocardiographic Abnormalities in mdx Mice

Brian Bostick; Yongping Yue; Yi Lai; Chun Long; Dejia Li; Dongsheng Duan

Adeno-associated virus (AAV)-mediated microdystrophin gene therapy holds great promise for treating Duchenne muscular dystrophy (DMD). Previous studies have revealed excellent skeletal muscle protection. Cardiac muscle is also compromised in DMD patients. Here we show that a single intravenous injection of AAV serotype-9 (AAV-9) microdystrophin vector efficiently transduced the entire heart in neonatal mdx mice, a dystrophin-deficient mouse DMD model. Furthermore, microdystrophin therapy normalized the heart rate, PR interval, and QT interval. The cardiomyopathy index was also significantly improved in treated mdx mice. Our study demonstrates for the first time that AAV microdystrophin gene therapy can ameliorate the electrocardiographic abnormalities in a mouse model for DMD.


The Journal of Pathology | 2011

Nitrosative stress elicited by nNOSµ delocalization inhibits muscle force in dystrophin-null mice†

Dejia Li; Yongping Yue; Yi Lai; Chady H. Hakim; Dongsheng Duan

The mechanism of force reduction is not completely understood in Duchenne muscular dystrophy (DMD), a dystrophin‐deficient lethal disease. Nitric oxide regulates muscle force. Interestingly, neuronal nitric oxide synthase µ (nNOSµ), a major source of muscle nitric oxide, is lost from the sarcolemma in DMD muscle. We hypothesize that nNOSµ delocalization contributes to force reduction in DMD. To test this hypothesis, we generated dystrophin/nNOSµ double knockout mice. Genetic elimination of nNOSµ significantly enhanced force in dystrophin‐null mice. Pharmacological inhibition of nNOS yielded similar results. To further test our hypothesis, we studied δ‐sarcoglycan‐null mice, a model of limb‐girdle muscular dystrophy. These mice had minimal sarcolemmal nNOSµ delocalization and muscle force was less compromised. Annihilation of nNOSµ did not improve their force either. To determine whether nNOSµ delocalization itself inhibited force, we corrected muscle disease in dystrophin‐null mice with micro‐dystrophins that either restored or did not restore sarcolemmal nNOSµ. Similar muscle force was obtained irrespective of nNOSµ localization. Additional studies suggest that nNOSµ delocalization selectively inhibits muscle force in dystrophin‐null mice via nitrosative stress. In summary, we have demonstrated for the first time that nitrosative stress elicited by nNOSµ delocalization is an important mechanism underlying force loss in DMD. Copyright


American Journal of Pathology | 2008

Preservation of Muscle Force in Mdx3cv Mice Correlates with Low-Level Expression of a Near Full-Length Dystrophin Protein

Dejia Li; Yongping Yue; Dongsheng Duan

The complete absence of dystrophin causes Duchenne muscular dystrophy. Its restoration by greater than 20% is needed to reduce muscle pathology and improve muscle force. Dystrophin levels lower than 20% are considered therapeutically irrelevant but are associated with a less severe phenotype in certain Becker muscular dystrophy patients. To understand the role of low-level dystrophin expression, we compared muscle force and pathology in mdx3cv and mdx4cv mice. Dystrophin was eliminated in mdx4cv mouse muscle but was expressed in mdx3cv mice as a near full-length protein at approximately 5% of normal levels. Consistent with previous reports, we found dystrophic muscle pathology in both mouse strains. Surprisingly, mdx3cv extensor digitorium longus muscle showed significantly higher tetanic force and was also more resistant to eccentric contraction-induced injury than mdx4cv extensor digitorium longus muscle. Furthermore, mdx3cv mice had stronger forelimb grip strength than mdx4cv mice. Immunostaining revealed utrophin up-regulation in both mouse strains. The dystrophin-associated glycoprotein complex was also restored in the sarcolemma in both strains although at levels lower than those in normal mice. Our results suggest that subtherapeutic expression levels of near full-length, membrane-bound dystrophin, possibly in conjunction with up-regulated utrophin levels, may help maintain minimal muscle force but not arrest muscle degeneration or necrosis. Our findings provide valuable insight toward understanding delayed clinical onset and/or slow disease progression in certain Becker muscular dystrophy patients.


Human Molecular Genetics | 2009

Sub-physiological sarcoglycan expression contributes to compensatory muscle protection in mdx mice

Dejia Li; Chun Long; Yongping Yue; Dongsheng Duan

Sarcoglycans are a group of single-pass transmembrane glycoproteins. In striated muscle, sarcoglycans interact with dystrophin and other dystrophin-associated proteins (DAPs) to form the dystrophin-associated glycoprotein complex (DGC). The DGC protects the sarcolemma from contraction-induced injury. Duchenne muscular dystrophy (DMD) is caused by dystrophin gene mutations. In the absence of dystrophin, the DGC is disassembled from the sarcolemma. This initiates a chain reaction of muscle degeneration, necrosis, inflammation and fibrosis. In contrast to human patients, dystrophin-null mdx mice are only mildly affected. Enhanced muscle regeneration and the up-regulation of utrophin and integrin are thought to protect mdx muscle. Interestingly, trace amounts of sarcoglycans and other DAPs can be detected at the mdx sarcolemma. It is currently unclear whether sub-physiological sarcoglycan expression also contributes to the mild phenotype in mdx mice. To answer this question, we generated delta-sarcoglycan/dystrophin double knockout mice (delta-Dko) in which residual sarcoglycans were completely eliminated from the sarcolemma. Interestingly, utrophin levels were further increased in these mice. However, enhanced utrophin expression did not mitigate disease. The clinical manifestation of delta-Dko mice was worse than that of mdx mice. They showed characteristic dystrophic signs, body emaciation and more macrophage infiltration. Their lifespan was reduced by 60%. Furthermore, delta-Dko muscle generated significantly less absolute muscle force and became more susceptible to contraction-induced injury. Our results suggest that sub-physiological sarcoglycan expression plays a critical role in ameliorating muscle disease in mdx mice. We speculate that low-level sarcoglycan expression may represent a useful strategy to palliate DMD.


PLOS ONE | 2010

Marginal Level Dystrophin Expression Improves Clinical Outcome in a Strain of Dystrophin/Utrophin Double Knockout Mice

Dejia Li; Yongping Yue; Dongsheng Duan

Inactivation of all utrophin isoforms in dystrophin-deficient mdx mice results in a strain of utrophin knockout mdx (uko/mdx) mice. Uko/mdx mice display severe clinical symptoms and die prematurely as in Duchenne muscular dystrophy (DMD) patients. Here we tested the hypothesis that marginal level dystrophin expression may improve the clinical outcome of uko/mdx mice. It is well established that mdx3cv (3cv) mice express a near-full length dystrophin protein at ∼5% of the normal level. We crossed utrophin-null mutation to the 3cv background. The resulting uko/3cv mice expressed the same level of dystrophin as 3cv mice but utrophin expression was completely eliminated. Surprisingly, uko/3cv mice showed a much milder phenotype. Compared to uko/mdx mice, uko/3cv mice had significantly higher body weight and stronger specific muscle force. Most importantly, uko/3cv outlived uko/mdx mice by several folds. Our results suggest that a threshold level dystrophin expression may provide vital clinical support in a severely affected DMD mouse model. This finding may hold clinical implications in developing novel DMD therapies.


Methods of Molecular Biology | 2011

Monitoring Murine Skeletal Muscle Function for Muscle Gene Therapy

Chady H. Hakim; Dejia Li; Dongsheng Duan

The primary function of skeletal muscle is to generate force. Muscle force production is compromised in various forms of acquired and/or inherited muscle diseases. An important goal of muscle gene therapy is to recover muscle strength. Genetically engineered mice and spontaneous mouse mutants are readily available for preclinical muscle gene therapy studies. In this chapter, we outlined the methods commonly used for measuring murine skeletal muscle function. These include ex vivo and in situ analysis of the contractile profile of a single intact limb muscle (the extensor digitorium longus for ex vivo assay and the tibialis anterior muscle for in situ assay), grip force analysis, and downhill treadmill exercise. Force measurement in a single muscle is extremely useful for pilot testing of new gene therapy protocols by local gene transfer. Grip force and treadmill assessments offer body-wide evaluation following systemic muscle gene therapy.


PLOS ONE | 2009

Ectopic Catalase Expression in Mitochondria by Adeno-Associated Virus Enhances Exercise Performance in Mice

Dejia Li; Yi Lai; Yongping Yue; Peter S. Rabinovitch; Chady H. Hakim; Dongsheng Duan

Oxidative stress is thought to compromise muscle contractility. However, administration of generic antioxidants has failed to convincingly improve performance during exhaustive exercise. One possible explanation may relate to the inability of the supplemented antioxidants to effectively eliminate excessive free radicals at the site of generation. Here, we tested whether delivering catalase to the mitochondria, a site of free radical production in contracting muscle, could improve treadmill performance in C57Bl/6 mice. Recombinant adeno-associated virus serotype-9 (AV.RSV.MCAT) was generated to express a mitochondria-targeted catalase gene. AV.RSV.MCAT was delivered to newborn C57Bl/6 mouse circulation at the dose of 1012 vector genome particles per mouse. Three months later, we observed a ∼2 to 10-fold increase of catalase protein and activity in skeletal muscle and the heart. Subcellular fractionation western blot and double immunofluorescence staining confirmed ectopic catalase expression in the mitochondria. Compared with untreated control mice, absolute running distance and body weight normalized running distance were significantly improved in AV.RSV.MCAT infected mice during exhaustive treadmill running. Interestingly, ex vivo contractility of the extensor digitorum longus muscle was not altered. Taken together, we have demonstrated that forced catalase expression in the mitochondria enhances exercise performance. Our result provides a framework for further elucidating the underlying mechanism. It also raises the hope of applying similar strategies to remove excessive, pathogenic free radicals in certain muscle diseases (such as Duchenne muscular dystrophy) and ameliorate muscle disease.


PLOS ONE | 2011

iNOS Ablation Does Not Improve Specific Force of the Extensor Digitorum Longus Muscle in Dystrophin-Deficient mdx4cv Mice

Dejia Li; Jin-Hong Shin; Dongsheng Duan

Nitrosative stress compromises force generation in Duchenne muscular dystrophy (DMD). Both inducible nitric oxide synthase (iNOS) and delocalized neuronal NOS (nNOS) have been implicated. We recently demonstrated that genetic elimination of nNOS significantly enhanced specific muscle forces of the extensor digitorum longus (EDL) muscle of dystrophin-null mdx4cv mice (Li D et al J. Path. 223:88–98, 2011). To determine the contribution of iNOS, we generated iNOS deficient mdx4cv mice. Genetic elimination of iNOS did not alter muscle histopathology. Further, the EDL muscle of iNOS/dystrophin DKO mice yielded specific twitch and tetanic forces similar to those of mdx4cv mice. Additional studies suggest iNOS ablation did not augment nNOS expression neither did it result in appreciable change of nitrosative stress markers in muscle. Our results suggest that iNOS may play a minor role in mediating nitrosative stress-associated force reduction in DMD.

Collaboration


Dive into the Dejia Li's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yi Lai

University of Missouri

View shared research outputs
Top Co-Authors

Avatar

Chun Long

University of Missouri

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Luke M. Judge

University of Washington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge