Yi-Ping Jiang
Second Military Medical University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Yi-Ping Jiang.
PLOS ONE | 2012
Hong Zhang; Cheng-Hao Yu; Yi-Ping Jiang; Cheng Peng; Kun He; Jian-Yuan Tang; Hai Liang Xin
Polydatin is one of main compounds in Polygonum cuspidatum, a plant with both medicinal and nutritional value. The possible hepatoprotective effects of polydatin on acute liver injury mice induced by carbon tetrachloride (CCl4) and the mechanisms involved were investigated. Intraperitoneal injection of CCl4 (50 µl/kg) resulted in a significant increase in the levels of serum aspartate aminotransferase (AST), alanine aminotransferase (ALT) and hepatic malondialdehyde (MDA), also a marked enhancement in the expression of hepatic tumor necrosis factor-alpha (TNF-α), interleukin-1 beta (IL-1β), cyclooxygenase-2 (COX-2), inducible nitric oxide synthase (iNOS) and nuclearfactor-kappa B (NF-κB). On the other hand, decreased glutathione (GSH) content and activities of glutathione transferase (GST), superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx) were observed following CCl4 exposure. Nevertheless, all of these phenotypes were evidently reversed by preadministration of polydatin for 5 continuous days. The mRNA and protein expression levels of hepatic growth factor-beta1 (TGF-β1) were enhanced further by polydatin. These results suggest that polydatin protects mice against CCl4-induced liver injury through antioxidant stress and antiinflammatory effects. Polydatin may be an effective hepatoprotective agent and a promising candidate for the treatment of oxidative stress- and inflammation-related diseases.
Evidence-based Complementary and Alternative Medicine | 2012
Liming Xue; Yin Wang; Yi-Ping Jiang; Ting Han; Yan Nie; Lu Zhao; Qiao-Yan Zhang; Lu-Ping Qin
Er-Xian Decoction (EXD), Epimedium herbs (herbs of Epimedium brevicornum Maxim, EBH), and icariin (ICA) have been proven to have estrogen-like and antiosteoporotic activity and are used for the treatment of osteoporosis, menopausal syndrome, and age-associated diseases. The present study found that EXD, EBH, and ICA treatments, emulating estrogen, significantly contributed to bone density and architecture in OVX rats and that EXD is similar to estrogen and exerts a concomitant effect on bone formation and bone resorption at the tissue level, while EBH and ICA produced bone-protective effects mainly by inhibiting bone resorption. Nevertheless, EXD, EBH, and ICA treatments manifested a fewer adverse effects on the uterus, mammary gland, and vagina compared to estrogen administrations. Among the EXD, EBH, and ICA, EXD was found to have superior efficacy and safety profile.
Phytomedicine | 2014
Cheng-Jian Zheng; Xiang-Xiang Zhao; Hongwei Ai; Bing Lin; Ting Han; Yi-Ping Jiang; Xin Xing; Lu-Ping Qin
The seeds of Vitex negundo L. (Verbenaceae) have been commonly used as a folk remedy for the treatment of rheumatism and joint inflammation in Traditional Chinese Medicine. This study aimed to evaluate the anti-arthritic activity of the extract of V. negundo seeds (EVNS) using Freunds complete adjuvant (CFA) induced arthritis (AA) in rat model. As a result, EVNS, with abundant phenylnaphthalene-type lignans, significantly inhibited the paw edema, decreased the arthritis score and spleen index, and reversed the weight loss of CFA-injected rats. Histopathological studies showed a marked decrease of synovial inflammatory infiltration and synovial lining hyperplasia in the joints of EVNS-treated animals. The remarkable decrement of serum inflammatory factors (TNF-α, IL-1β and IL-6) were observed in EVNS-treated rats, whereas, IL-10, an anti-inflammatory cytokine, was found to be significantly increased by EVNS. The expressions of COX-2 and 5-LOX in PBMC were also inhibited by administration of EVNS. Our results demonstrated that V. negundo seeds possessed potential therapeutic effect on adjuvant induced arthritis in rats by decreasing the levels of TNF-α, IL-1β and IL-6 and increasing that of IL-10 in serum as well as down-regulating the levels of COX-2 and 5-LOX, and therefore may be an effective cure for the treatment of human rheumatoid arthritis.
Journal of Ethnopharmacology | 2016
Naidan Zhang; Ting Han; Bao-Kang Huang; Khalid Rahman; Yi-Ping Jiang; Hongtao Xu; Lu-Ping Qin; Hailiang Xin; Qiao-Yan Zhang; Yi-min Li
ETHNOPHARMACOLOGICAL RELEVANCE Osteoporosis is a chronic epidemic which can leads to enhanced bone fragility and consequent an increase in fracture risk. Traditional Chinese medicine (TCM) formulas have a long history of use in the prevention and treatment of osteoporosis. Antiosteoporotic TCM formulas have conspicuous advantage over single drugs. Systematic data mining of the existing antiosteoporotic TCM formulas database can certainly help the drug discovery processes and help the identification of safe candidates with synergistic formulations. In this review, the authors summarize the clinical use and animal experiments of TCM formulas and their mechanism of action, and discuss the potential antiosteoporotic activity and the active constituents of commonly used herbs in TCM formulas for the therapy of osteoporosis. MATERIALS AND METHODS The literature was searched from Medline, Pubmed, ScienceDirect, Spring Link, Web of Science, CNKI and VIP database from 1989 to 2015, and also collected from Chinese traditional books and Chinese Pharmacopoeia with key words such as osteoporosis, osteoblast, osteoclast, traditional Chinese medicine formulas to identify studies on the antiosteoporotic effects of TCM formulas, herbs and chemical constituents, and also their possible mechanisms. RESULTS Thirty-three TCM formulas were commonly used to treat osteoporosis, and showed significant antiosteoporotic effects in human and animal. The herb medicines and their chemical constituents in TCM formulas were summarized, the pharmacological effects and chemical constituents of commonly used herbs in TCM formulas were described in detail. The action mechanisms of TCM formulas and their chemical constituents were described. Finally, the implication for the discovery of antiosteoporotic leads and combinatory ingredients from TCM formulas were prospectively discussed. CONCLUSIONS Clinical practice and animal experiments indicate that TCM formulas provide a definite therapeutic effect on osteoporosis. The active constituents in TCM formulas are diverse in chemical structure, and include flavonoids, lignans, saponins and iridoid glycosides. Antiosteoporotic mechanism of TCM formulas and herbs involves multi regulatory pathways, such as Wnt/β-catenin, BMP/Smad, MAPK pathway and RANKL/OPG system. Phytochemicals from TCM formulas and their compositional herb medicines offer great potential for the development of novel antiosteoporotic drugs. The active ingredients in TCM formulas can be developed in combination as potent drugs, which may exhibit better antiosteoporotic effects compared to the individual compound.
Phytomedicine | 2014
Wei Peng; Qian-Liang Ming; Ping Han; Qiao-Yan Zhang; Yi-Ping Jiang; Cheng-Jian Zheng; Ting Han; Lu-Ping Qin
The fruits of Xanthium strumarium L. (Asteraceae) have been used extensively in China for treatment of various diseases such as allergic rhinitis (AR), tympanitis, urticaria and arthritis or ozena. This study was designed to systemically investigate the effects of the caffeoylxanthiazonoside (CXT) isolated from fruits of X. strumarium on AR in rodent animals. Animals were orally administered with CXT. Anti-allergic activity of CXT was evaluated by passive cutaneous anaphylaxis test (PCA); acetic acid-induced writhing tests were used to evaluate the analgesic effects of CXT; acetic acid-induced vascular permeability tests were performed to evaluate anti-inflammatory effect of CXT. Then, the model AR in rats was established to evaluate the effects of CXT on AR with the following tests: the sneezing and nasal scratching frequencies, IgE level in serum, and histopathological examinations. Our results demonstrated that CXT had favorable anti-allergic, anti-inflammatory and analgesic effects. Additionally, we found that CXT was helpful to ameliorate the nasal symptoms and to down-regulate IgE levels in AR rats. Thus, we suggested that CXT can be treated as a candidate for treating AR.
Evidence-based Complementary and Alternative Medicine | 2012
Liming Xue; Lei Jiao; Yin Wang; Yan Nie; Ting Han; Yi-Ping Jiang; Khalid Rahman; Qiao-Yan Zhang; Lu-Ping Qin
Er-Xian decoction (EXD), a traditional Chinese medicine, has been reported to have a protective effect against bone loss in ovariectomized osteoporotic rats, and the inclusion of icariin (I), curculigoside (C), and berberine (B) in EXD displays inhibitory effects on osteoclastic bone resorption. In the present paper, we investigated the interaction and effects of I, C, B, and their combination on bone resorption activity in vitro on osteoclasts derived from rat bone marrow cells. ICB synergistically decreased the formation of bone resorption pits, the number of multinucleated osteoclasts, and the activity of tartrate-resistant acid phosphatase (TRAP) and showed antagonistic or additive effects on cathepsin K activity in the coculture system of osteoblasts and bone marrow cells in the presence of 1, 25-dihydroxyvitamin D3 and dexamethasone. The combination of ICB also enhanced the inhibitory effects on the formation of F-actin ring, a cytoskeleton structure of osteoclasts induced from bone marrow cells with macrophage colony stimulation factor (M-CSF) and receptor activator of NF-κB ligand (RANKL). In addition, ICB synergistically improved the ratio of protein expression of osteoprotegerin (OPG) and RANKL in osteoblasts and interfered with the mitogen-activated protein kinases (MAPKs) pathway in osteoclast. These results clearly show that I, C, B, and their combination in EXD exert effects of mutual reinforcement. However, IBC does not show an intensified adverse effect in the ovariectomized murine model, as revealed by change in body and uterine weight, confirming the safety of EXD. These observations are in agreement with the rationality of the formula used in this paper.
Fitoterapia | 2012
Wen-Bo Xin; Xiao-hua Man; Cheng-Jian Zheng; Min Jia; Yi-Ping Jiang; Xiang-Xiang Zhao; Gui-Lin Jin; Zhu-Jun Mao; Hai-qiu Huang; Lu-Ping Qin
Six new acylphloroglucinol derivatives, sampsonols A-F (1-6), were isolated from the petroleum ether extract of the aerial parts of Hypericum sampsonii. The structures and relative configurations of sampsonols A-F were elucidated by extensive spectroscopic analyses. All these compounds were tested for their in vitro cytotoxic and anti-inflammatory activities. Sampsonols A and B (1 and 2) showed significant cytotoxicity against four human tumor cell lines with IC(50) values in the range of 13-28μM, whereas sampsonols C and F (3 and 6) showed potent inhibitory activities against LPS-induced NO production in RAW 264.7 macrophages with IC(50) values of 27.3 and 29.3μM, respectively.
Journal of Ethnopharmacology | 2012
Hong Zhang; Ting Han; Cheng-Hao Yu; Yi-Ping Jiang; Cheng Peng; Xia Ran; Lu-Ping Qin
ETHNOPHARMACOLOGICAL RELEVANCE Ligusticum chuanxiong Hort. (Umbelliferae) is a plant used as medicine and food in China. The essential oil (EO) extracted from its rhizomes possesses many pharmacological activities. However, there have been no scientific reports in the modern literature on the safety of EO. AIMS OF THE STUDY The objective of this study was to conduct a chemical composition analysis and evaluate acute toxicity and skin sensitivity of EO from rhizomes of Ligusticum chuanxiong. MATERIALS AND METHODS The chemical composition of hydrodistilled EO was analyzed by gas chromatography-mass spectrometry (GC-MS) and was evaluated in animals for acute toxicity, skin irritation and sensitization tests. RESULTS Dozens of compounds were detected and the major components of EO were ligustilide and butylidenephthalide with relative contents of 67.46 and 5.06%, respectively. The oral and intra-peritoneal lethal doses of 50% (LD(50)) in mice were 7.23 g/kg (approximately 14,606 times of clinical dose used) and 2.25 g/kg (approximately 5091 times of clinical dose used), respectively. The doses of 0.115 and 0.23 g/kg EO (approximately 232.5 and 465 times of the respective clinical doses used) revealed slight irritation effects on rabbit skin, but 1g/kg EO (approximately 2020 times of clinical dose used) had no observable effect on guinea pig skin in the skin sensitization test. CONCLUSIONS These experimental results indicate that short term application of EO is probably safe within the range of its clinical doses, but the dose should be controlled for external use due to its slight skin irritation.
Journal of Ethnopharmacology | 2016
Mei Li; Naidan Zhang; Yin Wang; Ting Han; Yi-Ping Jiang; Khalid Rahman; Lu-Ping Qin; Hailiang Xin; Qiao-Yan Zhang
ETHNOPHARMACOLOGICAL SIGNIFICANCE Icariin (I), ferulic acid (F) and timosaponin B II (T) derived respectively from the leaf of Epimedium brevicornu Maxim (EBM, Berberidaceae), rhizome of Anemarrhena asphodeloides Bunge (AAB, Liliaceae) and root of Angelica sinensis (Oliv.) Diels (ASD, Umbelliferae) are included in several traditional Chinese medicine (TCM) formulas for the treatment of osteoporosis. In addition, the medicinal materials and chemical constituents in many traditional Chinese formulas have been shown to have potential synergistic, additive and antagonistic effects. AIM OF STUDY To explore the action mechanism and interactions between I, T and F as bone anabolic ingredients on osteoblasts, and fully understand their action mechanism and rationality of the formula design. MATERIALS AND METHODS An osteoporotic model was established in bilaterally ovariectomized mice. Bone mineral density (BMD), bone mineral content (BMC) and serum biochemical parameters including alkaline phosphatase (ALP), tartrate resistant acid phosphatase (TRAP), osteoprotegerin (OPG) and deoxypyridinoline cross-links (DPD) were measured to evaluate the effects of I, T or F alone and their combinations on osteoporotic mice. UMR-106 osteoblastic cells and primary osteoblasts in neonatal rat calvarias were used to evaluate the osteogenesis effect. The immunohistochemical method and Western-blot analysis were used to detect the expression of critical proteins in the process of proliferation and differentiation of osteoblasts. RESULTS IFT combinations enhanced the therapeutic effect without increasing the adverse effects on osteoporotic mice, synergistically increased the osteoblast proliferation, ALP activity and mineralized nodule formation, and promoted the expression of bone matrix by regulating BMP and Wnt/β-catenin signaling pathways in osteoblasts. CONCLUSION IFT combinations reinforced the therapeutic effect on osteoporosis by modulating multi-signaling pathways and action targets.
Evidence-based Complementary and Alternative Medicine | 2012
Hong Zhang; Yan Zhang; Yi-Ping Jiang; Lan-Ke Zhang; Cheng Peng; Kun He; Khalid Rahman; Lu-Ping Qin
Hypertrophic scarring is a common proliferative disorder of dermal fibroblasts characterized by collagen overproduction and excessive deposition of extracellular matrix (ECM). There is no consensus about the best therapeutics to produce complete and permanent improvement of scars with few side effects. To investigate the therapeutic effects of oleanolic acid (OA) on hypertrophic scars and explore the possible mechanism of action involved, a rabbit ear model with hypertrophic scars was established. OA (2.5%, 5%, and 10%) was given once daily to the scars for 28 consecutive days. As a result, OA significantly alleviated formed hypertrophic scars on rabbit ears. The levels of TGF-β 1, MMP-1, TIMP-1, and collagens I and III were notably decreased, and the number of apoptosis cells and mRNA expression of MMP-2, caspase-3, and caspase-9 were markedly increased in the scar tissue. The scar elevation index (SEI) was also evidently reduced. Histological findings exhibited significant amelioration of the collagen tissue. These results suggest that OA has the favorable curative effects on formed hypertrophic scars in the rabbit ear model, and the possible mechanism of action is that OA decreases HSFs proliferation and increases HSFs apoptosis by reduction of P311 gene expression and TGF-β 1 production, inhibition of TIMP-1 secretion, enhancement of MMP-2 activity, and subsequently facilitation of degradation of collagen types I and III.