Ting Han
University of Michigan
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ting Han.
Proceedings of the National Academy of Sciences of the United States of America | 2009
Ting Han; Arun Prasad Manoharan; Tim T. Harkins; Pascal Bouffard; Colin Fitzpatrick; Diana S. Chu; Danielle Thierry-Mieg; Jean Thierry-Mieg; John Kim
Endogenous small interfering RNAs (endo-siRNAs) regulate diverse gene expression programs in eukaryotes by either binding and cleaving mRNA targets or mediating heterochromatin formation; however, the mechanisms of endo-siRNA biogenesis, sorting, and target regulation remain poorly understood. Here we report the identification and function of a specific class of germline-generated endo-siRNAs in Caenorhabditis elegans that are 26 nt in length and contain a guanine at the first nucleotide position (i.e., 26G RNAs). 26G RNAs regulate gene expression during spermatogenesis and zygotic development, and their biogenesis requires the ERI-1 exonuclease and the RRF-3 RNA-dependent RNA polymerase (RdRP). Remarkably, we identified two nonoverlapping subclasses of 26G RNAs that sort into specific RNA-induced silencing complexes (RISCs) and differentially regulate distinct mRNA targets. Class I 26G RNAs target genes are expressed during spermatogenesis, whereas class II 26G RNAs are maternally inherited and silence gene expression during zygotic development. These findings implicate a class of endo-siRNAs in the global regulation of transcriptional programs required for fertility and development.
Cell Metabolism | 2008
Siming Li; Chang Liu; Na Li; Tong Hao; Ting Han; David E. Hill; Marc Vidal; Jiandie D. Lin
Impaired mitochondrial function has been implicated in the pathogenesis of type 2 diabetes, heart failure, and neurodegeneration as well as during aging. Studies with the PGC-1 transcriptional coactivators have demonstrated that these factors are central components of the regulatory network that controls mitochondrial function in mammalian cells. Here we describe a genome-wide coactivation assay to globally identify transcription factors and cofactors in this pathway. These analyses revealed a molecular signature of the PGC-1alpha transcriptional network and identified BAF60a (SMARCD1) as a molecular link between the SWI/SNF chromatin-remodeling complexes and hepatic lipid metabolism. Adenoviral-mediated expression of BAF60a stimulates fatty acid beta-oxidation in cultured hepatocytes and ameliorates hepatic steatosis in vivo. PGC-1alpha mediates the recruitment of BAF60a to PPARalpha-binding sites, leading to transcriptional activation of peroxisomal and mitochondrial fat-oxidation genes. These results define a role for the SWI/SNF complexes in the regulation of lipid homeostasis.
Proceedings of the National Academy of Sciences of the United States of America | 2009
Marc R. Friedländer; Catherine Adamidi; Ting Han; Svetlana Lebedeva; Thomas A. Isenbarger; Martin Hirst; Marco A. Marra; Chad Nusbaum; William Lee; James C. Jenkin; Alejandro Sánchez Alvarado; John Kim; Nikolaus Rajewsky
Freshwater planarian flatworms possess uncanny regenerative capacities mediated by abundant and collectively totipotent adult stem cells. Key functions of these cells during regeneration and tissue homeostasis have been shown to depend on PIWI, a molecule required for Piwi-interacting RNA (piRNA) expression in planarians. Nevertheless, the full complement of piRNAs and microRNAs (miRNAs) in this organism has yet to be defined. Here we report on the large-scale cloning and sequencing of small RNAs from the planarian Schmidtea mediterranea, yielding altogether millions of sequenced, unique small RNAs. We show that piRNAs are in part organized in genomic clusters and that they share characteristic features with mammalian and fly piRNAs. We further identify 61 novel miRNA genes and thus double the number of known planarian miRNAs. Sequencing, as well as quantitative PCR of small RNAs, uncovered 10 miRNAs enriched in planarian stem cells. These miRNAs are down-regulated in animals in which stem cells have been abrogated by irradiation, and thus constitute miRNAs likely associated with specific stem-cell functions. Altogether, we present the first comprehensive small RNA analysis in animals belonging to the third animal superphylum, the Lophotrochozoa, and single out a number of miRNAs that may function in regeneration. Several of these miRNAs are deeply conserved in animals.
Cell | 2014
Gelin Wang; Ting Han; Deepak Nijhawan; Pano Theodoropoulos; Jacinth Naidoo; Sivaramakrishnan Yadavalli; Hamid Mirzaei; Andrew A. Pieper; Joseph M. Ready; Steven L. McKnight
The P7C3 class of aminopropyl carbazole chemicals fosters the survival of neurons in a variety of rodent models of neurodegeneration or nerve cell injury. To uncover its mechanism of action, an active derivative of P7C3 was modified to contain both a benzophenone for photocrosslinking and an alkyne for CLICK chemistry. This derivative was found to bind nicotinamide phosphoribosyltransferase (NAMPT), the rate-limiting enzyme involved in the conversion of nicotinamide into nicotinamide adenine dinucleotide (NAD). Administration of active P7C3 chemicals to cells treated with doxorubicin, which induces NAD depletion, led to a rebound in intracellular levels of NAD and concomitant protection from doxorubicin-mediated toxicity. Active P7C3 variants likewise enhanced the activity of the purified NAMPT enzyme, providing further evidence that they act by increasing NAD levels through its NAMPT-mediated salvage.
PLOS Genetics | 2012
Allison C. Billi; Amelia F. Alessi; Vishal Khivansara; Ting Han; Mallory A. Freeberg; Shohei Mitani; John Kim
Small RNAs regulate diverse biological processes by directing effector proteins called Argonautes to silence complementary mRNAs. Maturation of some classes of small RNAs involves terminal 2′-O-methylation to prevent degradation. This modification is catalyzed by members of the conserved HEN1 RNA methyltransferase family. In animals, Piwi-interacting RNAs (piRNAs) and some endogenous and exogenous small interfering RNAs (siRNAs) are methylated, whereas microRNAs are not. However, the mechanisms that determine animal HEN1 substrate specificity have yet to be fully resolved. In Caenorhabditis elegans, a HEN1 ortholog has not been studied, but there is evidence for methylation of piRNAs and some endogenous siRNAs. Here, we report that the worm HEN1 ortholog, HENN-1 (HEN of Nematode), is required for methylation of C. elegans small RNAs. Our results indicate that piRNAs are universally methylated by HENN-1. In contrast, 26G RNAs, a class of primary endogenous siRNAs, are methylated in female germline and embryo, but not in male germline. Intriguingly, the methylation pattern of 26G RNAs correlates with the expression of distinct male and female germline Argonautes. Moreover, loss of the female germline Argonaute results in loss of 26G RNA methylation altogether. These findings support a model wherein methylation status of a metazoan small RNA is dictated by the Argonaute to which it binds. Loss of henn-1 results in phenotypes that reflect destabilization of substrate small RNAs: dysregulation of target mRNAs, impaired fertility, and enhanced somatic RNAi. Additionally, the henn-1 mutant shows a weakened response to RNAi knockdown of germline genes, suggesting that HENN-1 may also function in canonical RNAi. Together, our results indicate a broad role for HENN-1 in both endogenous and exogenous gene silencing pathways and provide further insight into the mechanisms of HEN1 substrate discrimination and the diversity within the Argonaute family.
eLife | 2017
Sungki Hong; Mallory A. Freeberg; Ting Han; Avani Kamath; Yao Yao; Tomoko Fukuda; Tsukasa Suzuki; John Kim; Ken Inoki
The RNA binding protein, LARP1, has been proposed to function downstream of mTORC1 to regulate the translation of 5’TOP mRNAs such as those encoding ribosome proteins (RP). However, the roles of LARP1 in the translation of 5’TOP mRNAs are controversial and its regulatory roles in mTORC1-mediated translation remain unclear. Here we show that LARP1 is a direct substrate of mTORC1 and Akt/S6K1. Deep sequencing of LARP1-bound mRNAs reveal that non-phosphorylated LARP1 interacts with both 5’ and 3’UTRs of RP mRNAs and inhibits their translation. Importantly, phosphorylation of LARP1 by mTORC1 and Akt/S6K1 dissociates it from 5’UTRs and relieves its inhibitory activity on RP mRNA translation. Concomitantly, phosphorylated LARP1 scaffolds mTORC1 on the 3’UTRs of translationally-competent RP mRNAs to facilitate mTORC1-dependent induction of translation initiation. Thus, in response to cellular mTOR activity, LARP1 serves as a phosphorylation-sensitive molecular switch for turning off or on RP mRNA translation and subsequent ribosome biogenesis. DOI: http://dx.doi.org/10.7554/eLife.25237.001
Nature Chemical Biology | 2016
Ting Han; Maria Goralski; Emanuela Capota; Shae B Padrick; Jiwoong Kim; Yang Xie; Deepak Nijhawan
CD437 is a retinoid-like small molecule that selectively induces apoptosis in cancer but not normal cells through an unknown mechanism. We used a forward genetic strategy to discover mutations in POLA1 that coincide with CD437 resistance (POLA1R). Introduction of one of these mutations into cancer cells by CRISPR/Cas9 genome editing conferred CD437 resistance demonstrating causality. POLA1 encodes DNA polymerase α, the enzyme responsible for initiating DNA synthesis during the S phase of the cell cycle. CD437 inhibits DNA replication in cells and recombinant POLA1 activity in vitro. Both effects are abrogated by mutations associated with POLA1R. In addition, we detected an increase in the total fluorescence intensity and anisotropy of CD437 in the presence of increasing concentrations of POLA1 consistent with a direct binding interaction. The discovery of POLA1 as the direct anti-cancer target for CD437 has the potential to catalyze its development into an anti-cancer therapeutic.
Cell Research | 2014
Ting Han; John Kim
Global shortening of 3′ untranslated regions (3′ UTRs) through alternative polyadenylation is an emerging hallmark of cancer. A recent study identifies the cleavage factor Im 25 (CFIm25) as an important mediator of 3′ UTR shortening in glioblastomas and demonstrates a causal relationship between alternative polyadenylation and cancer cell proliferation.
Proceedings of the National Academy of Sciences of the United States of America | 2015
Amelia F. Alessi; Vishal Khivansara; Ting Han; Mallory A. Freeberg; James J. Moresco; Patricia G. Tu; Eric Montoye; John R. Yates; Xantha Karp; John Kim
Significance MicroRNAs (miRNAs) are critical regulators of diverse biological processes. Despite rapid advances in understanding miRNA biogenesis and function, a gap remains in our knowledge of how miRNA effector complex activity [miRNA-induced silencing complex (miRISC)] is modulated. Specifically, the importance of posttranslational protein modifications in controlling miRISC activity remains largely unexplored. Here, we characterize a previously unidentified role for the conserved serine/threonine kinase, casein kinase II (CK2), in promoting the miRNA pathway in Caenorhabditis elegans. Notably, we establish the requirement of CK2 for miRNA function and provide mechanistic evidence that loss of CK2 compromises miRISC binding to mRNA targets. Furthermore, we identify that the miRISC cofactor and DEAD-box RNA helicase, CGH-1/DDX6, is phosphorylated by CK2 at a conserved residue, which is required for CGH-1–mediated miRNA function. MicroRNAs (miRNAs) play essential, conserved roles in diverse developmental processes through association with the miRNA-induced silencing complex (miRISC). Whereas fundamental insights into the mechanistic framework of miRNA biogenesis and target gene silencing have been established, posttranslational modifications that affect miRISC function are less well understood. Here we report that the conserved serine/threonine kinase, casein kinase II (CK2), promotes miRISC function in Caenorhabditis elegans. CK2 inactivation results in developmental defects that phenocopy loss of miRISC cofactors and enhances the loss of miRNA function in diverse cellular contexts. Whereas CK2 is dispensable for miRNA biogenesis and the stability of miRISC cofactors, it is required for efficient miRISC target mRNA binding and silencing. Importantly, we identify the conserved DEAD-box RNA helicase, CGH-1/DDX6, as a key CK2 substrate within miRISC and demonstrate phosphorylation of a conserved N-terminal serine is required for CGH-1 function in the miRNA pathway.
Science | 2010
Marco Mangone; Arun Prasad Manoharan; Danielle Thierry-Mieg; Jean Thierry-Mieg; Ting Han; Sebastian D. Mackowiak; Emily K. Mis; Charles Zegar; Michelle Gutwein; Vishal Khivansara; Oliver Attie; Kevin C. Chen; Kourosh Salehi-Ashtiani; Marc Vidal; Timothy T. Harkins; Pascal Bouffard; Yutaka Suzuki; Sumio Sugano; Yuji Kohara; Nikolaus Rajewsky; Fabio Piano; Kristin C. Gunsalus; John Kim