Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yijia Xiong is active.

Publication


Featured researches published by Yijia Xiong.


Environmental Microbiology | 2011

Extracellular Polymeric Substances from Shewanella sp. HRCR-1 Biofilms: Characterization by Infrared Spectroscopy and Proteomics

Bin Cao; Liang Shi; Roslyn N. Brown; Yijia Xiong; Jim K. Fredrickson; Margaret F. Romine; Matthew J. Marshall; Mary S. Lipton; Haluk Beyenal

The composition of extracellular polymeric substances (EPS) from Shewanella sp. HRCR-1 biofilms was investigated using infrared spectroscopy and proteomics to provide insight into potential ecophysiological functions and redox activity of the EPS. Both bound and loosely associated EPS were extracted from Shewanella sp. HRCR-1 biofilms prepared using a hollow-fibre membrane biofilm reactor. Fourier transform infrared spectra revealed the presence of proteins, polysaccharides, nucleic acids, membrane lipids and fatty acids in the EPS fractions. Using a global proteomic approach, a total of 58 extracellular and outer membrane proteins were identified in the EPS. These included homologues of multiple Shewanella oneidensis MR-1 proteins that potentially contribute to key physiological biofilm processes, such as biofilm-promoting protein BpfA, surface-associated serine protease, nucleotidases (CpdB and UshA), an extracellular lipase, and oligopeptidases (PtrB and a M13 family oligopeptidase lipoprotein). In addition, 20 redox proteins were found in extracted EPS. Among the detected redox proteins were the homologues of two S. oneidensis MR-1 c-type cytochromes, MtrC and OmcA, which have been implicated in extracellular electron transfer. Given their detection in the EPS of Shewanella sp. HRCR-1 biofilms, c-type cytochromes may contribute to the possible redox activity of the biofilm matrix and play important roles in extracellular electron transfer reactions.


Journal of the American Chemical Society | 2012

Synthesis of a Targeted Biarsenical Cy3-Cy5 Affinity Probe for Super-resolution Fluorescence Imaging

Na Fu; Yijia Xiong; Thomas C. Squier

Photoswitchable fluorescent probes capable of the targeted labeling of tagged proteins are of significant interest due to their ability to enable in situ imaging of protein complexes within native biomolecular assemblies. Here we describe the synthesis of a fluorescent probe (AsCy3Cy5) and demonstrate the targeted labeling and super-resolution imaging of a tagged protein within a supramolecular protein complex.


Chemistry: A European Journal | 2014

Enzyme design from the bottom up: an active nickel electrocatalyst with a structured peptide outer coordination sphere.

Matthew L. Reback; Garry W. Buchko; Brandon L. Kier; Bojana Ginovska-Pangovska; Yijia Xiong; Sheri Lense; Jianbo Hou; John A. S. Roberts; Christina M. Sorensen; Simone Raugei; Thomas C. Squier; Wendy J. Shaw

Catalytic, peptide-containing metal complexes with a well-defined peptide structure have the potential to enhance molecular catalysts through an enzyme-like outer coordination sphere. Here, we report the synthesis and characterization of an active, peptide-based metal complex built upon the well-characterized hydrogen production catalyst [Ni(P(Ph)2N(Ph))2](2+) (P(Ph)2N(Ph)=1,3,6-triphenyl-1-aza-3,6-diphosphacycloheptane). The incorporated peptide maintains its β-hairpin structure when appended to the metal core, and the electrocatalytic activity of the peptide-based metal complex (≈100,000 s(-1)) is enhanced compared to the parent complex ([Ni(P(Ph)2N(APPA))2](2+); ≈50,500 s(-1)). The combination of an active molecular catalyst with a structured peptide provides a scaffold that permits the incorporation of features of an enzyme-like outer-coordination sphere necessary to create molecular electrocatalysts with enhanced functionality.


ChemBioChem | 2009

A Targeted Releasable Affinity Probe (TRAP) for In Vivo Photocrosslinking

Ping Yan; Ting Wang; Gregory J. Newton; Tatyana V. Knyushko; Yijia Xiong; Diana J. Bigelow; Thomas C. Squier; M. Uljana Mayer

A protein TRAP: The in vivo photocrosslinking of TRAP after its intracellular targeting to a binding sequence on the bait protein stabilizes protein interactions. Because the crosslinker is releasable, simple mass spectrometry can be used to identify the protein binding sites after purification.


Bioconjugate Chemistry | 2013

Optimized Design and Synthesis of a Cell-Permeable Biarsenical Cyanine Probe for Imaging Tagged Cytosolic Bacterial Proteins

Na Fu; Yijia Xiong; Thomas C. Squier

To optimize cellular delivery and specific labeling of tagged cytosolic proteins by biarsenical fluorescent probes built around a cyanine dye (Cy3) scaffold, we have systematically varied the polarity of the N-alkyl chain (i.e., 4-5 methylene groups appended by a sulfonate or methoxy ester moiety) and arsenic capping reagent (ethanedithiol versus benzenedithiol). Optimal live-cell labeling and visualization of tagged cytosolic proteins is reported using an ethanedithiol capping reagent with the uncharged methoxy ester functionalized N-alkyl chains. These measurements demonstrate the general utility of this new class of photostable and highly fluorescent biarsenical probes based on the cyanine dye scaffold for in vivo labeling of tagged cellular proteins for live cell imaging measurements of protein dynamics.


Journal of Chemical Theory and Computation | 2012

Force Field Development and Molecular Dynamics of [NiFe] Hydrogenase

Dayle M. A. Smith; Yijia Xiong; Tjerk P. Straatsma; Kevin M. Rosso; Thomas C. Squier

Classical molecular force-field parameters describing the structure and motion of metal clusters in [NiFe] hydrogenase enzymes can be used to compare the dynamics and thermodynamics of [NiFe] under different oxidation, protonation, and ligation circumstances. Using density functional theory (DFT) calculations of small model clusters representative of the active site and the proximal, medial, and distal Fe/S metal centers and their attached protein side chains, we have calculated classical force-field parameters for [NiFe] in reduced and oxidized states, including internal coordinates, force constants, and atom-centered charges. Derived force constants revealed that cysteinate ligands bound to the metal ions are more flexible in the Ni-B active site, which has a bridging hydroxide ligand, than in the Ni-C active site, which has a bridging hydride. Ten nanosecond all-atom, explicit-solvent MD simulations of [NiFe] hydrogenase in oxidized and reduced catalytic states established the stability of the derived force-field parameters in terms of Cα and metal cluster fluctuations. Average active site structures from the protein MD simulations are consistent with [NiFe] structures from the Protein Data Bank, suggesting that the derived force-field parameters are transferrable to other hydrogenases beyond the structure used for testing. A comparison of experimental H2-production rates demonstrated a relationship between cysteinate side chain rotation and activity, justifying the use of a fully dynamic model of [NiFe] metal cluster motion.


Journal of the American Chemical Society | 2013

Synthesis and Application of an Environmentally Insensitive Cy3-Based Arsenical Fluorescent Probe To Identify Adaptive Microbial Responses Involving Proximal Dithiol Oxidation

Na Fu; Dian Su; John R. Cort; Baowei Chen; Yijia Xiong; Wei Jun Qian; Allan E. Konopka; Diana J. Bigelow; Thomas C. Squier

Reversible disulfide oxidation between proximal cysteines in proteins represents a common regulatory control mechanism to modulate flux through metabolic pathways in response to changing environmental conditions. To enable in vivo measurements of cellular redox changes linked to disulfide bond formation, we have synthesized a cell-permeable thiol-reactive affinity probe (TRAP) consisting of a monosubstituted cyanine dye derivatized with arsenic (i.e., TRAP_Cy3) to trap and visualize dithiols in cytosolic proteins. Alkylation of reactive thiols prior to displacement of the bound TRAP_Cy3 by ethanedithiol permits facile protein capture and mass spectrometric identification of proximal reduced dithiols to the exclusion of individual cysteines. Applying TRAP_Cy3 to evaluate cellular responses to increases in oxygen and light levels in the photosynthetic microbe Synechococcus sp. PCC7002, we observe large decreases in the abundance of reduced dithiols in cellular proteins, which suggest redox-dependent mechanisms involving the oxidation of proximal disulfides. Under these same growth conditions that result in the oxidation of proximal thiols, there is a reduction in the abundance of post-translational oxidative protein modifications involving methionine sulfoxide and nitrotyrosine. These results suggest that the redox status of proximal cysteines responds to environmental conditions, acting to regulate metabolic flux and minimize the formation of reactive oxygen species to decrease oxidative protein damage.


Biochemistry | 2011

Targeted Protein Degradation of Outer Membrane Decaheme Cytochrome MtrC Metal Reductase in Shewanella oneidensis MR-1 Measured Using Biarsenical Probe CrAsH-EDT2

Yijia Xiong; Baowei Chen; Liang Shi; James K. Fredrickson; Diana J. Bigelow; Thomas C. Squier

Development of efficient microbial biofuel cells requires an ability to exploit interfacial electron transfer reactions to external electron acceptors, such as metal oxides; such reactions occur in the facultative anaerobic Gram-negative bacterium Shewanella oneidensis MR-1 through the catalytic activity of the outer membrane decaheme c-type cytochrome MtrC. Central to the utility of this pathway to synthetic biology is an understanding of cellular mechanisms that maintain optimal MtrC function, cellular localization, and renewal by degradation and resynthesis. In order to monitor trafficking to the outer membrane, and the environmental sensitivity of MtrC, we have engineered a tetracysteine tag (i.e., CCPGCC) at its C-terminus that permits labeling by the cell impermeable biarsenical fluorophore carboxy-FlAsH (CrAsH) of MtrC at the surface of living Shewanella oneidensis MR-1 cells. In comparison, the cell permeable reagent FlAsH permits labeling of the entire population of MtrC, including proteolytic fragments resulting from incorrect maturation. We demonstrate specific labeling by CrAsH of engineered MtrC (MtrC*) which is dependent on the presence of a functional type 2 secretion system (T2S), as evidenced by T2S system gspD or gspG deletion mutants which are incapable of CrAsH labeling. Under these latter conditions, MtrC* undergoes proteolytic degradation to form a large 35-38 kDa fragment; this degradation product is also resolved during normal turnover of the CrAsH-labeled MtrC protein. No MtrC protein is released into the medium during turnover, suggesting the presence of cellular turnover systems involving MtrC reuptake and degradation. The mature MtrC localized on the outer membrane is a long-lived protein, with a turnover rate of 0.043 h(-1) that is insensitive to O(2) concentration. Maturation of MtrC is relatively inefficient, with substantial rates of turnover of the immature protein prior to export to the outer membrane (i.e., 0.028 h(-1)) that are consistent with the inherent complexity associated with correct heme insertion and acylation of MtrC that occurs in the periplasm prior to its targeting to the outer membrane. These latter results suggest that MtrC protein trafficking to the outer membrane and its subsequent degradation are tightly regulated, which is consistent with cellular processing pathways that target MtrC to extracellular structures and their possible role in promoting electron transfer from Shewanella to extracellular acceptors.


ACS Synthetic Biology | 2016

Antigen Binding and Site-Directed Labeling of Biosilica-Immobilized Fusion Proteins Expressed in Diatoms

Nicole R. Ford; Karen A. Hecht; Dehong Hu; Galya Orr; Yijia Xiong; Thomas C. Squier; Gregory L. Rorrer; Guritno Roesijadi

The diatom Thalassiosira pseudonana was genetically modified to express biosilica-targeted fusion proteins comprising either enhanced green fluorescent protein (EGFP) or single chain antibodies engineered with a tetracysteine tagging sequence. Of interest were the site-specific binding of (1) the fluorescent biarsenical probe AsCy3 and AsCy3e to the tetracysteine tagged fusion proteins and (2) high and low molecular mass antigens, the Bacillus anthracis surface layer protein EA1 or small molecule explosive trinitrotoluene (TNT), to biosilica-immobilized single chain antibodies. Analysis of biarsenical probe binding using fluorescence and structured illumination microscopy indicated differential colocalization with EGFP in nascent and mature biosilica, supporting the use of either EGFP or bound AsCy3 and AsCy3e in studying biosilica maturation. Large increases in the lifetime of a fluorescent analogue of TNT upon binding single chain antibodies provided a robust signal capable of discriminating binding to immobilized antibodies in the transformed frustule from nonspecific binding to the biosilica matrix. In conclusion, our results demonstrate an ability to engineer diatoms to create antibody-functionalized mesoporous silica able to selectively bind chemical and biological agents for the development of sensing platforms.


Biophysical Journal | 2014

Controlled Activation of Protein Rotational Dynamics using Smart Hydrogel Tethering

Brenda M. Beech; Yijia Xiong; Curt B. Boschek; Cheryl L. Baird; Diana J. Bigelow; Thomas C. Squier

Stimulus-responsive hydrogel materials that stabilize and control protein dynamics have the potential to enable a range of applications that take advantage of the inherent specificity and catalytic efficiencies of proteins. Here we describe the modular construction of a hydrogel using an engineered calmodulin (CaM) within a poly(ethylene glycol) (PEG) matrix that involves the reversible tethering of proteins through an engineered CaM-binding sequence. For these measurements, maltose binding protein (MBP) was isotopically labeled with (13)C and (15)N, permitting dynamic structural measurements using TROSY-HSQC NMR spectroscopy. The protein dynamics is suppressed upon initial formation of hydrogels, with a concomitant increase in protein stability. Relaxation of the hydrogel matrix following transient heating results in enhanced protein dynamics and resolution of substrate-induced large-amplitude domain rearrangements.

Collaboration


Dive into the Yijia Xiong's collaboration.

Top Co-Authors

Avatar

Thomas C. Squier

Pacific Northwest National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Baowei Chen

Pacific Northwest National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Diana J. Bigelow

Pacific Northwest National Laboratory

View shared research outputs
Top Co-Authors

Avatar

M. Uljana Mayer

Pacific Northwest National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Guritno Roesijadi

Pacific Northwest National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Karen A. Hecht

Pacific Northwest National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Nicole R. Ford

Pacific Northwest National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Na Fu

Pacific Northwest National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Brenda M. Beech

Washington State University Tri-Cities

View shared research outputs
Top Co-Authors

Avatar

Cheryl L. Baird

Pacific Northwest National Laboratory

View shared research outputs
Researchain Logo
Decentralizing Knowledge