Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Thomas C. Squier is active.

Publication


Featured researches published by Thomas C. Squier.


Experimental Gerontology | 2001

Oxidative stress and protein aggregation during biological aging.

Thomas C. Squier

Biological aging is a fundamental process that represents the major risk factor with respect to the development of cancer, neurodegenerative, and cardiovascular diseases in vertebrates. It is, therefore, evident that the molecular mechanisms of aging are fundamental to understand many disease processes. In this regard, the oxidation and nitration of intracellular proteins and the formation of protein aggregates have been suggested to underlie the loss of cellular function and the reduced ability of senescent animals to withstand physiological stresses. Since oxidatively modified proteins are thermodynamically unstable and assume partially unfolded tertiary structures that readily form aggregates, it is likely that oxidized proteins are intermediates in the formation of amyloid fibrils. It is, therefore, of interest to identify oxidatively sensitive protein targets that may play a protective role through their ability to down-regulate energy metabolism and the consequent generation of reactive oxygen species (ROS). In this respect, the maintenance of cellular calcium gradients represents a major energetic expense, which links alterations in intracellular calcium levels to ATP utilization and the associated generation of ROS through respiratory control mechanisms. The selective oxidation or nitration of the calcium regulatory proteins calmodulin and Ca-ATPase that occurs in vivo during aging and under conditions of oxidative stress may represent an adaptive response to oxidative stress that functions to down-regulate energy metabolism and the associated generation of ROS. Since these calcium regulatory proteins are also preferentially oxidized or nitrated under in vitro conditions, these results suggest an enhanced sensitivity of these critical calcium regulatory proteins, which modulate signal transduction processes and intracellular energy metabolism, to conditions of oxidative stress. Thus, the selective oxidation of critical signal transduction proteins probably represents a regulatory mechanism that functions to minimize the generation of ROS through respiratory control mechanisms. The reduction of the rate of ROS generation, in turn, will promote cellular survival under conditions of oxidative stress, when reactive oxygen and nitrogen species overwhelm cellular antioxidant defense systems, by minimizing the non-selective oxidation of a range of biomolecules. Since protein aggregation occurs if protein repair and degradative systems are unable to act upon oxidized proteins and restore cellular function, the reduction of the oxidative load on the cell by the down-regulation of the electron transport chain functions to minimize protein aggregation. Thus, ROS function as signaling molecules that fine-tune cellular metabolism through the selective oxidation or nitration of calcium regulatory proteins in order to minimize wide-spread oxidative damage and protein aggregation. Oxidative damage to cellular proteins, the loss of calcium homeostasis and protein aggregation contribute to the formation of amyloid deposits that accumulate during biological aging. Critical to understand the relationship between these processes and biological aging is the identification of oxidatively sensitive proteins that modulate energy utilization and the associated generation of ROS. In this latter respect, oxidative modifications to the calcium regulatory proteins calmodulin (CaM) and the sarco/endoplasmic reticulum Ca-ATPase (SERCA) function to down-regulate ATP utilization and the associated generation of ROS associated with replenishing intracellular ATP through oxidative phosphorylation. Reductions in the rate of ROS generation, in turn, will minimize protein oxidation and facilitate intracellular repair and degradative systems that function to eliminate damaged and partially unfolded proteins. Since the rates of protein repair or degradation compete with the rate of protein aggregation, the modulation of intracellular calcium concentrations and energy metabolism through the selective oxidation or nitration of critical signal transduction proteins (i.e. CaM or SERCA) is thought to maintain cellular function by minimizing protein aggregation and amyloid formation. Age-dependent increases in the rate of ROS generation or declines in cellular repair or degradation mechanisms will increase the oxidative load on the cell, resulting in corresponding increases in the concentrations of oxidized proteins and the associated formation of amyloid.


FEBS Letters | 1999

DIASTEREOSELECTIVE REDUCTION OF PROTEIN-BOUND METHIONINE SULFOXIDE BY METHIONINE SULFOXIDE REDUCTASE

Victor S. Sharov; Deborah A. Ferrington; Thomas C. Squier; Christian Schöneich

Methionine sulfoxide (MetSO) in calmodulin (CaM) was previously shown to be a substrate for bovine liver peptide methionine sulfoxide reductase (pMSR, EC 1.8.4.6), which can partially recover protein structure and function of oxidized CaM in vitro. Here, we report for the first time that pMSR selectively reduces the D‐sulfoxide diastereomer of CaM‐bound L‐MetSO (L‐Met‐D‐SO). After exhaustive reduction by pMSR, the ratio of L‐Met‐D‐SO to L‐Met‐L‐SO decreased to about 1:25 for hydrogen peroxide‐oxidized CaM, and to about 1:10 for free MetSO. The accumulation of MetSO upon oxidative stress and aging in vivo may be related to incomplete, diastereoselective, repair by pMSR.


Biophysical Journal | 1998

Loss of Conformational Stability in Calmodulin upon Methionine Oxidation

Jun Gao; Daniel H. Yin; Yihong Yao; Hongye Sun; Zhihai Qin; Christian Schöneich; Todd D. Williams; Thomas C. Squier

We have used electrospray ionization mass spectrometry (ESI-MS), circular dichroism (CD), and fluorescence spectroscopy to investigate the secondary and tertiary structural consequences that result from oxidative modification of methionine residues in wheat germ calmodulin (CaM), and prevent activation of the plasma membrane Ca-ATPase. Using ESI-MS, we have measured rates of modification and molecular mass distributions of oxidatively modified CaM species (CaMox) resulting from exposure to H2O2. From these rates, we find that oxidative modification of methionine to the corresponding methionine sulfoxide does not predispose CaM to further oxidative modification. These results indicate that methionine oxidation results in no large-scale alterations in the tertiary structure of CaMox, because the rates of oxidative modification of individual methionines are directly related to their solvent exposure. Likewise, CD measurements indicate that methionine oxidation results in little change in the apparent alpha-helical content at 28 degrees C, and only a small (0.3 +/- 0.1 kcal mol(-1)) decrease in thermal stability, suggesting the disruption of a limited number of specific noncovalent interactions. Fluorescence lifetime, anisotropy, and quenching measurements of N-(1-pyrenyl)-maleimide (PMal) covalently bound to Cys26 indicate local structural changes around PMal in the amino-terminal domain in response to oxidative modification of methionine residues in the carboxyl-terminal domain. Because the opposing globular domains remain spatially distant in both native and oxidatively modified CaM, the oxidative modification of methionines in the carboxyl-terminal domain are suggested to modify the conformation of the amino-terminal domain through alterations in the structural features involving the interdomain central helix. The structural basis for the linkage between oxidative modification and these global conformational changes is discussed in terms of possible alterations in specific noncovalent interactions that have previously been suggested to stabilize the central helix in CaM.


Life Sciences | 1996

Decreased plasma membrane calcium transport activity in aging brain

Mary L. Michaelis; Diana J. Bigelow; Christian Schöneich; Todd D. Williams; L. Ramonda; D. Yin; A.F.R. Hühmer; Yihong Yao; Jun Gao; Thomas C. Squier

We have assessed the functional properties of both calmodulin (CaM) and the plasma membrane Ca(2+)-ATPase in brains of young, middle aged, and old Fisher 344 rats. Under optimal conditions of saturating Ca2+ and ATP, the CaM-activated Ca(2+)-ATPase activity was decreased with increasing age, particularly when CaM isolated from the brains of aged rats was used to stimulate the enzyme. In the case of CaM, structural modifications within the primary sequence of the protein from aged brains were identified. We found that during normal biological aging approximately 6 methionine residues were modified to their corresonding sulfoxide per CaM, and no other amino acids were modified. Some aspects of the age-related decline in the effectiveness of CaM as an activator of Ca(2+)-ATPase could be simulated using a range of reactive oxygen species (including hydrogen peroxide and oxoperoxynitrite) and, in the latter case, the extent of oxidative modification of specific methionine residues was directly related to their surface accessibility. The pattern of oxidative modification of the methionines in the aged CaM was less straightforward, though both in vitro oxidation of CaM and aging within the brain markedly decreased the functional properties of this important Ca(2+)-regulating protein.


Neurobiology of Aging | 1998

Age-related decrease in brain synaptic membrane Ca2+-ATPase in F344/BNF1 rats.

Asma Zaidi; Jun Gao; Thomas C. Squier; Mary L. Michaelis

We used Fisher 344/Brown Norway hybrid rats (F344/BNF1) to determine whether previously reported decreases in brain synaptic plasma membrane (SPM) Ca2+-ATPase activity in inbred F344 rats also occurred in the hybrids. Plasma membrane Ca2+-ATPase (PMCA) activity in SPMs from F344/BNF1 rat brains showed a progressive age-dependent decrease in Vmax from 60.9 +/- 3.7 nmol Pi/mg/min (n = 6) in 5-month rats to 32.4 +/- 3.6 nmol Pi/mg/min (n = 6) in 34-month animals, with no change in K (act) for Ca2+. Immunoreactive PMCA in SPMs also decreased by approximately 20% at 34 months, and the calmodulin (CaM) bound to membranes following extraction with EDTA also declined progressively with age. The effectiveness of CaM in stimulating PMCA activity was significantly lower when CaM was purified from the brains of old vs. young F344 rats and when CaM from 5-month rats was oxidized in vitro. These results indicate: 1) that PMCA activity in SPMs from longer lived F344/BNF1 hybrids also decreases with age; 2) that part of the reduction in PMCA activity is due to loss of PMCA from the membranes; and 3) that age-related structural changes in CaM may decrease its interaction with proteins in SPMs.


Biophysical Journal | 2001

Oxidatively Modified Calmodulin Binds to the Plasma Membrane Ca-ATPase in a Nonproductive and Conformationally Disordered Complex

Jun Gao; Yihong Yao; Thomas C. Squier

Oxidation of either Met(145) or Met(146) in wheat germ calmodulin (CaM) to methionine sulfoxide prevents the CaM-dependent activation of the plasma membrane (PM) Ca-ATPase (D. Yin, K. Kuczera, and T. C. Squier, 2000, Chem. Res. Toxicol. 13:103-110). To investigate the structural basis for the inhibition of the PM-Ca-ATPase by oxidized CaM (CaM(ox)), we have used circular dichroism (CD) and fluorescence spectroscopy to resolve conformational differences within the complex between CaM and the PM-Ca-ATPase. The similar excited-state lifetime and solvent accessibility of the fluorophore N-1-pyrenyl-maleimide covalently bound to Cys(26) in unoxidized CaM and CaM(ox) indicates that the globular domains within CaM(ox) assume a native-like structure following association with the PM-Ca-ATPase. However, in comparison with oxidized CaM there are increases in the 1) molar ellipticity in the CD spectrum and 2) conformational heterogeneity between the opposing globular domains for CaM(ox) bound to the CaM-binding sequence of the PM-Ca-ATPase. Furthermore, CaM(ox) binds to the PM-Ca-ATPase with high affinity at a distinct, but overlapping, site to that normally occupied by unoxidized CaM. These results suggest that alterations in binding interactions between CaM(ox) and the PM-Ca-ATPase block important structural transitions within the CaM-binding sequence of the PM-Ca-ATPase that are normally associated with enzyme activation.


Biochemical Journal | 2000

Phospholamban remains associated with the Ca2+- and Mg2+-dependent ATPase following phosphorylation by cAMP-dependent protein kinase.

S Negash; Qing Yao; Hongye Sun; Jonathan J. Li; Diana J. Bigelow; Thomas C. Squier

We have used fluorescence and spin-label EPR spectroscopy to investigate how the phosphorylation of phospholamban (PLB) by cAMP-dependent protein kinase (PKA) modifies structural interactions between PLB and the Ca(2+)- and Mg(2+)-dependent ATPase (Ca-ATPase) that result in enzyme activation. Following covalent modification of N-terminal residues of PLB with dansyl chloride or the spin label 4-isothiocyanato-2,2,6,6-tetramethylpiperidine-N-oxyl (ITC-TEMPO), we have co-reconstituted PLB with affinity-purified Ca-ATPase isolated from skeletal sarcoplasmic reticulum (SR) with full retention of catalytic function. The Ca(2+)-dependence of the ATPase activity of this reconstituted preparation is virtually identical with that observed using native cardiac SR before and after PLB phosphorylation, indicating that co-reconstituted sarcoplasmic/endoplasmic-reticulum Ca(2+)-ATPase 1 (SERCA1) and PLB provide an equivalent experimental model for SERCA2a-PLB interactions. Phosphorylation of PLB in the absence of the Ca-ATPase results in a greater amplitude of rotational mobility, suggesting that the structural linkage between the transmembrane region and the N-terminus is destabilized. However, whereas co-reconstitution with the Ca-ATPase restricts the amplitude of rotational motion of PLB, subsequent phosphorylation of PLB does not significantly alter its rotational dynamics. Thus structural interactions between PLB and the Ca-ATPase that restrict the rotational mobility of the N-terminus of PLB are retained following the phosphorylation of PLB by PKA. On the other hand, the fluorescence intensity decay of bound dansyl is sensitive to the phosphorylation state of PLB, indicating that there are changes in the tertiary structure of PLB coincident with enzyme activation. These results suggest that PLB phosphorylation alters its structural interactions with the Ca-ATPase by inducing structural rearrangements between PLB and the Ca-ATPase within a defined complex that modulates Ca(2+)-transport function.


Journal of Biological Chemistry | 2000

Ordered and cooperative binding of opposing globular domains of calmodulin to the plasma membrane Ca-ATPase.

Hongye Sun; Thomas C. Squier

We have investigated the mechanisms of activation of the plasma membrane (PM) Ca-ATPase by calmodulin (CaM), which result in enhanced calcium transport rates and the maintenance of low intracellular calcium levels. We have isolated the amino- or carboxyl-terminal domains of CaM (i.e. CaMN or CaMC), permitting an identification of their relative specificity for binding to sites on either the PM Ca-ATPase or a peptide (C28W) corresponding to the CaM-binding sequence. We find that either CaMN or CaMC alone is capable of productive interactions with the PM Ca-ATPase that induces enzyme activation. There are, however, large differences in the affinity and specificity of binding between CaMN and CaMC and either C28W or the PM Ca-ATPase. The initial binding interaction between CaMC and the PM Ca-ATPase is highly specific, having approximately 10,000-fold greater affinity in comparison with CaMN. However, following the initial association of either CaMC or CaMN, there is a 300-fold enhancement in the affinity of CaMN for the secondary binding site. Thus, while CaMC binds with a high affinity to the two CaM-binding sites within the PM Ca-ATPase in a sequential manner, CaMN binds cooperatively with a lower affinity to both binding sites. These large differences in the binding affinities and specificities of the amino- and carboxyl-terminal domains ensure that CaM binding to the PM Ca-ATPase normally involves the formation of a specific complex in which the initial high affinity association of the carboxyl-terminal domain promotes the association of the amino-terminal domain necessary for enzyme activation.


Biochimica et Biophysica Acta | 1995

Adaptive changes in lipid composition of skeletal sarcoplasmic reticulum membranes associated with aging

Arkadi G. Krainev; Deborah A. Ferrington; Todd D. Williams; Thomas C. Squier; Diana J. Bigelow

We have undertaken a detailed examination of changes associated with aging in lipid composition and corresponding physical properties of hindlimb skeletal sarcoplasmic reticulum (SR) membranes isolated from young (5 months), middle-aged (16 months), and old (28 months) Fischer strain 344 rats. Silica gel HPLC chromatography was used to separate phospholipid headgroup species. Subsequent reversed-phase HPLC was used to resolve fatty acid chain compositions of phosphatidylcholine, phosphatidylethanolamine, and phosphatidylinositol species. For all three phospholipid pools, significant age-related variations are observed in the abundance of multiple molecular species, particularly those having polyunsaturated fatty acid chains. Using mass spectrometry (fast atom bombardment and tandem techniques) to distinguish ester- from ether-linked phosphatidylethanolamine species, we demonstrate that overall plasmenylethanolamine content is substantially increased with age, from 48 mol% to 62 mol%. A substantial increase is also observed in the single molecular species 18:0-20:4 phosphatidylinositol suggesting implications for signalling pathways. In addition, associated with senescence we find a significant increase in the rigidifying lipid, cholesterol. Despite these changes in lipid composition of different aged animals, the average bilayer fluidity examined at several bilayer depths with stearic acid spin labels, is not altered. Neither do we find differences in the rotational mobility of maleimide spin-labeled Ca(2+)-ATPase, as determined from saturation-transfer electron paramagnetic resonance, which is sensitive to both the fluidity of lipids directly associated with the Ca(2+)-ATPase and to its association with proteins.


Biochimica et Biophysica Acta | 1997

Decreased conformational stability of the sarcoplasmic reticulum Ca-ATPase in aged skeletal muscle.

Deborah A. Ferrington; Terry E. Jones; Zhihai Qin; Melissa Miller-Schlyer; Thomas C. Squier; Diana J. Bigelow

Sarcoplasmic reticulum (SR) membranes purified from young adult (4-6 months) and aged (26-28 months) Fischer 344 male rat skeletal muscle were compared with respect to the functional and structural properties of the Ca-ATPase and its associated lipids. While we find no age-related alterations in (1) expression levels of Ca-ATPase protein, and (2) calcium transport and ATPase activities, the Ca-ATPase isolated from aged muscle exhibits more rapid inactivation during mild (37 degrees C) heat treatment relative to that from young muscle. Saturation-transfer EPR measurements of maleimide spin-labeled Ca-ATPase and parallel measurements of fatty acyl chain dynamics demonstrate that, accompanying heat inactivation, the Ca-ATPase from aged skeletal muscle more readily undergoes self-association to form inactive oligomeric species without initial age-related differences in association state of the protein. Neither age nor heat inactivation results in differences in acyl chain dynamics of the bilayer including those lipids at the lipid-protein interface. Initial rates of tryptic digestion associated with the Ca-ATPase in SR isolated from aged muscle are 16(+/- 2)% higher relative to that from young muscle. indicating more solvent exposure of a portion of the cytoplasmic domain. During heat inactivation these structural differences are amplified as a result of immediate and rapid further unfolding of the Ca-ATPase isolated from aged muscle relative to the delayed unfolding of the Ca-ATPase isolated from young muscle. Thus age-related alterations in the solvent exposure of cytoplasmic peptides of the Ca-ATPase are likely to be critical to the loss of conformational and functional stability.

Collaboration


Dive into the Thomas C. Squier's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jun Gao

University of Kansas

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Qing Yao

University of Kansas

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge