Yiling Hong
University of Kentucky
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Yiling Hong.
Toxicology and Applied Pharmacology | 2008
Maqusood Ahamed; Michael Karns; Michael S. Goodson; John J. Rowe; Saber M. Hussain; John J. Schlager; Yiling Hong
Silver nanoparticles (Ag NPs) have recently received much attention for their possible applications in biotechnology and life sciences. Ag NPs are of interest to defense and engineering programs for new material applications as well as for commercial purposes as an antimicrobial. However, little is known about the genotoxicity of Ag NPs following exposure to mammalian cells. This study was undertaken to examine the DNA damage response to polysaccharide surface functionalized (coated) and non-functionalized (uncoated) Ag NPs in two types of mammalian cells; mouse embryonic stem (mES) cells and mouse embryonic fibroblasts (MEF). Both types of Ag NPs up-regulated the cell cycle checkpoint protein p53 and DNA damage repair proteins Rad51 and phosphorylated-H2AX expression. Furthermore both of them induced cell death as measured by the annexin V protein expression and MTT assay. Our observations also suggested that the different surface chemistry of Ag NPs induce different DNA damage response: coated Ag NPs exhibited more severe damage than uncoated Ag NPs. The results suggest that polysaccharide coated particles are more individually distributed while agglomeration of the uncoated particles limits the surface area availability and access to membrane bound organelles.
Journal of Biological Chemistry | 2001
Michael L. Goodson; Yiling Hong; Richard S. Rogers; Michael J. Matunis; Ok-Kyong Park-Sarge; Kevin D. Sarge
Heat shock transcription factor 2 (HSF2) is a transcription factor that regulates heat shock protein gene expression, but the mechanisms regulating the function of this factor are unclear. Here we report that HSF2 is a substrate for modification by the ubiquitin-related protein SUMO-1 and that HSF2 colocalizes in cells with SUMO-1 in nuclear granules. Staining with anti-promyelocytic leukemia antibodies indicates that these HSF2-containing nuclear granules are PML bodies. Our results identify lysine 82 as the major site of SUMO-1 modification in HSF2, which is located in a “wing” within the DNA-binding domain of this protein. Interestingly, SUMO-1 modification of HSF2 results in conversion of this factor to the active DNA binding form. This is the first demonstration that SUMO-1 modification can directly alter the DNA binding ability of a transcription factor and reveals a new mechanism by which SUMO-1 modification can regulate protein function.
Toxicology in Vitro | 2011
Kyle Meyer; Pavan Rajanahalli; Maqusood Ahamed; John J. Rowe; Yiling Hong
The production of engineered nanoparticles is growing rapidly as the field of nanotechnology continues to expand. Zinc oxide nanoparticles (ZnO NPs) are used in various applications, including catalysis, electronics, biosensors, medicine, paints, sunscreens and cosmetics, thus it is important to understand the biological effects and risks of ZnO NPs. This study was designed to investigate the apoptosis induction by ZnO NPs via mitogen-activated protein kinase p38 and cell cycle checkpoint protein p53 pathways in human dermal fibroblasts. MTT-based cell viability assay showed a significant decrease in cell survivorship after ZnO NP exposure, and phase contrast images revealed that ZnO NP treated cells had lower density and a rounded morphology. Apoptosis induction was confirmed by the annexin V assay and Western blot analysis showed the up-regulation of p53 and phospho-p38 proteins. Furthermore, in ZnO NP exposed cells, p53 protein was phosphorylated at Ser33 and Ser46 sites known to be phosphorylated by p38. Our results suggest that ZnO NPs have the potential to induce apoptosis in human dermal fibroblasts via p53-p38 pathways.
Journal of Biological Chemistry | 2001
Eric J. Lubert; Yiling Hong; Kevin D. Sarge
Members of the phosphoprotein phosphatase family of serine/threonine phosphatases are thought to exist in different native oligomeric complexes. Protein phosphatase 2A (PP2A) is composed of a catalytic subunit (PP2Ac) that complexes with an A subunit, which in turn also interacts with one of many B subunits that regulate substrate specificity and/or (sub)cellular localization of the enzyme. Another family member, protein phosphatase 5 (PP5), contains a tetratricopeptide repeat domain at its N terminus, which has been suggested to mediate interactions with other proteins. PP5 was not thought to interact with partners homologous to the A or B subunits that exist within PP2A. However, our results indicate that this may not be the case. A yeast two-hybrid screen revealed an interaction between PP5 and the A subunit of PP2A. This interaction was confirmed for endogenous proteins in vivo using immunoprecipitation analysis and for recombinant proteins by in vitro binding experiments. Our results also indicate that the tetratricopeptide repeat domain of PP5 is required and sufficient for this interaction. In addition, immunoprecipitated PP5 contains associated B subunits. Thus, our results suggest that PP5 can exist in a PP2A-like heterotrimeric form containing both A and B subunits.
Journal of Biological Chemistry | 1999
Yiling Hong; Kevin D. Sarge
Heat shock transcription factor (HSF) mediates the stress-induced expression of heat shock protein genes (hsp). However, HSF is required for normal cell function even in the absence of stress and is important for cell cycle progression, but the mechanism that mediates these effects of HSF is unknown. Here, it is shown that a member of the HSF family, HSF2, interacts with the PR65 (A) subunit of protein phosphatase 2A (PP2A). HSF2 binding to PR65 blocks its interaction with the catalytic subunit, due to competition between HSF2 and catalytic subunit for the same binding site in PR65. In addition, overexpression of HSF2 stimulates PP2A activity in cells, indicating the relevance of HSF2 as a regulator of PP2A in vivo. These results identify HSF2 as a dual function protein, capable of regulating both hsp expression and PP2A activity. This could function as a mechanism by whichhsp expression is integrated with the control of cell division or other PP2A-regulated pathways.
Biochemical and Biophysical Research Communications | 2003
Roland S. Hilgarth; Yiling Hong; Ok Kyong Park-Sarge; Kevin D. Sarge
The transcriptional regulatory protein HSF1 is the key mediator of induced heat shock protein gene expression in response to elevated temperature and other stresses. Our previous studies identified stress-induced SUMO-1 modification of HSF1 as an important regulator of the DNA-binding activity of this factor. The underlying molecular mechanism by which stress leads to sumoylation of HSF1 was unknown. Prompted by previous studies indicating stress-induced phosphorylation at serine 307 of HSF1, a site very near the sumoylation site at lysine 298, we examined the role of this phosphorylation event in regulating SUMO-1 modification of HSF1. Using a combination of transfection and in vitro phosphorylation/sumoylation experiments, our results indicate that phosphorylation at serine 307 stimulates sumoylation of HSF1. Our results also reveal a role for a conserved leucine zipper sequence in the C-terminal region of HSF1 in inhibiting its SUMO-1 modification. Based on these data, we postulate that phosphorylation at serine 307 could stimulate HSF1 sumoylation by causing a conformation change that relieves the inhibitory effect of the C-terminal leucine zipper.
Archive | 2009
Amanda M. Schrand; Jay Johnson; Liming Dai; Saber M. Hussain; John J. Schlager; Lin Zhu; Yiling Hong; Eiji Ōsawa
With the recent development in nanoscience and nanotechnology, there is a pressing demand for assessment of the potential hazards of carbon nanomaterials to humans and other biological systems. This chapter summarizes our recent in vitro cytotoxicity and genotoxicity studies on carbon nanomaterials with an emphasis on carbon nanotubes and nanodiamonds. The studies summarized in this chapter demonstrate that carbon nanomaterials exhibit material-specific and cell-specific cytotoxicity with the general trend for biocompatibility: nanodiamonds > carbon black powders > multiwalled carbon nanotubes > single-walled carbon nanotubes, with macrophages being much more sensitive to the cytotoxicity of these carbon nanomaterials than neuroblastoma cells. However, the cytotoxicity to carbon nanomaterials could be tuned by functionalizing the nanomaterials with different surface groups. Multiwalled carbon nanotubes and nanodiamonds, albeit to a less extend, can accumulate in mouse embryonic stem (ES) cells to cause DNA damage through reactive oxygen species (ROS) generation and to increase the mutation frequency in mouse ES cells. These results point out the great need for careful scrutiny of the toxicity of nanomaterials at the molecular level, or genotoxicity, even for those materials like multiwalled carbon nanotubes and nanodiamonds that have been demonstrated to cause limited or no toxicity at the cellular level.
Journal of Biological Chemistry | 2007
Hollie S. Skaggs; Hongyan Xing; Donald C. Wilkerson; Lynea A. Murphy; Yiling Hong; Christopher N. Mayhew; Kevin D. Sarge
Stress conditions inhibit mRNA export, but mRNAs encoding heat shock proteins continue to be efficiently exported from the nucleus during stress. How HSP mRNAs bypass this stress-associated export inhibition was not known. Here, we show that HSF1, the transcription factor that binds HSP promoters after stress to induce their transcription, interacts with the nuclear pore-associating TPR protein in a stress-responsive manner. TPR is brought into proximity of the HSP70 promoter after stress and preferentially associates with mRNAs transcribed from this promoter. Disruption of the HSF1-TPR interaction inhibits the export of mRNAs expressed from the HSP70 promoter, both endogenous HSP70 mRNA and a luciferase reporter mRNA. These results suggest that HSP mRNA export escapes stress inhibition via HSF1-mediated recruitment of the nuclear pore-associating protein TPR to HSP genes, thereby functionally connecting the first and last nuclear steps of the gene expression pathway, transcription and mRNA export.
Journal of Biological Chemistry | 2008
Jie Zhang; Michael L. Goodson; Yiling Hong; Kevin D. Sarge
In a previous study we found that sumoylation of the DNA-binding protein heat shock factor 2 (HSF2) is up-regulated during mitosis, but the mechanism that mediates this regulation was unknown. Here we show that HSF2 interacts with the polycomb protein MEL-18, that this interaction decreases during mitosis, and that overexpression and RNA interference-mediated reduction of MEL-18 result in decreased and increased HSF2 sumoylation, respectively. Other results suggest that MEL-18 may also function to inhibit the sumoylation of other cellular proteins. The results also show that MEL-18 is able to interact with the small ubiquitin-like modifier (SUMO) ubiquitin carrier protein (E2) enzyme UBC9 and that MEL-18 inhibits the ability of UBC9 to transfer the SUMO protein to target proteins. Together, the results in this work suggest a mechanism in which MEL-18 bound to HSF2 inhibits its sumoylation by binding to and inhibiting the activity of UBC9 enzymes in the vicinity of HSF2. These results provide an explanation for how mitotic HSF2 sumoylation is regulated and suggest that MEL-18, in contrast to the sumoylation-stimulating activities of the polycomb protein PC2, actually functions like an anti-SUMO ubiquitin-protein isopeptide ligase (E3), interacting both with HSF2 and the SUMO E2 UBC9 but acting to inhibit UBC9 activity to decrease sumoylation of a target protein, in this case that of HSF2.
Cell Stress & Chaperones | 2010
Hongyan Xing; Yiling Hong; Kevin D. Sarge
Cullin-RING ubiquitin ligases promote the polyubiquitination and degradation of many important cellular proteins, which previous studies indicated can be targeted for degradation via interaction with BTB domain-containing subunits of this E3 ligase complex. PEST domains are known to promote the degradation of proteins that contain them. However, the molecular mechanism by which PEST sequences promote degradation of these proteins is not understood. Here we show that the PEST sequences of a short-lived protein called HSF2 interact with Cullin3, a subunit of a Cullin-RING E3 ubiquitin ligase, and that this interaction mediates the Cul3-dependent ubiquitination and degradation of HSF2. These results indicate how, at the molecular level, PEST sequences can promote the proteolysis of proteins that contain them. They also expand understanding of the mechanisms by which substrates can be recruited to Cullin-RING E3 ubiquitin ligases to include interactions between PEST sequences and Cul3.