Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Donald C. Wilkerson is active.

Publication


Featured researches published by Donald C. Wilkerson.


American Journal of Physiology-heart and Circulatory Physiology | 2011

Adaptive induction of NF-E2-related factor-2-driven antioxidant genes in endothelial cells in response to hyperglycemia

Zoltan Ungvari; Lora C. Bailey-Downs; Tripti Gautam; Rosario Jiménez; György Losonczy; Cuihua Zhang; Praveen Ballabh; Fabio A. Recchia; Donald C. Wilkerson; William E. Sonntag; Kevin J. Pearson; Rafael de Cabo; Anna Csiszar

Hyperglycemia in diabetes mellitus promotes oxidative stress in endothelial cells, which contributes to development of cardiovascular diseases. Nuclear factor erythroid 2-related factor-2 (Nrf2) is a transcription factor activated by oxidative stress that regulates expression of numerous reactive oxygen species (ROS) detoxifying and antioxidant genes. This study was designed to elucidate the homeostatic role of adaptive induction of Nrf2-driven free radical detoxification mechanisms in endothelial protection under diabetic conditions. Using a Nrf2/antioxidant response element (ARE)-driven luciferase reporter gene assay we found that in a cultured coronary arterial endothelial cell model hyperglycemia (10-30 mmol/l glucose) significantly increases transcriptional activity of Nrf2 and upregulates the expression of the Nrf2 target genes NQO1, GCLC, and HMOX1. These effects of high glucose were significantly attenuated by small interfering RNA (siRNA) downregulation of Nrf2 or overexpression of Keap-1, which inactivates Nrf2. High-glucose-induced upregulation of NQO1, GCLC, and HMOX1 was also prevented by pretreatment with polyethylene glycol (PEG)-catalase or N-acetylcysteine, whereas administration of H(2)O(2) mimicked the effect of high glucose. To test the effects of metabolic stress in vivo, Nrf2(+/+) and Nrf2(-/-) mice were fed a high-fat diet (HFD). HFD elicited significant increases in mRNA expression of Gclc and Hmox1 in aortas of Nrf2(+/+) mice, but not Nrf2(-/-) mice, compared with respective standard diet-fed control mice. Additionally, HFD-induced increases in vascular ROS levels were significantly greater in Nrf2(-/-) than Nrf2(+/+) mice. HFD-induced endothelial dysfunction was more severe in Nrf2(-/-) mice, as shown by the significantly diminished acetylcholine-induced relaxation of aorta of these animals compared with HFD-fed Nrf2(+/+) mice. Our results suggest that adaptive activation of the Nrf2/ARE pathway confers endothelial protection under diabetic conditions.


American Journal of Physiology-endocrinology and Metabolism | 2012

Perinatal exercise improves glucose homeostasis in adult offspring

Lindsay G. Carter; Kaitlyn N. Lewis; Donald C. Wilkerson; Christine M. Tobia; Sara Y. Ngo Tenlep; Preetha Shridas; Mary L. Garcia-Cazarin; Gretchen Wolff; Francisco H. Andrade; Richard Charnigo; Karyn A. Esser; Josephine M. Egan; Rafael de Cabo; Kevin J. Pearson

Emerging research has shown that subtle factors during pregnancy and gestation can influence long-term health in offspring. In an attempt to be proactive, we set out to explore whether a nonpharmacological intervention, perinatal exercise, might improve offspring health. Female mice were separated into sedentary or exercise cohorts, with the exercise cohort having voluntary access to a running wheel prior to mating and during pregnancy and nursing. Offspring were weaned, and analyses were performed on the mature offspring that did not have access to running wheels during any portion of their lives. Perinatal exercise caused improved glucose disposal following an oral glucose challenge in both female and male adult offspring (P < 0.05 for both). Blood glucose concentrations were reduced to lower values in response to an intraperitoneal insulin tolerance test for both female and male adult offspring of parents with access to running wheels (P < 0.05 and P < 0.01, respectively). Male offspring from exercised dams showed increased percent lean mass and decreased fat mass percent compared with male offspring from sedentary dams (P < 0.01 for both), but these parameters were unchanged in female offspring. These data suggest that short-term maternal voluntary exercise prior to and during healthy pregnancy and nursing can enhance long-term glucose homeostasis in offspring.


Cell Stress & Chaperones | 2005

HSF2 binds to the Hsp90, Hsp27, and c-Fos promoters constitutively and modulates their expression.

Donald C. Wilkerson; Hollie S. Skaggs; Kevin D. Sarge

Abstract Although the vast majority of genomic DNA is tightly compacted during mitosis, the promoter regions of a number of genes remain in a less compacted state throughout this stage of the cell cycle. The decreased compaction of these promoter regions, which is referred to as gene bookmarking, is thought to be important for the ability of cells to express these genes during the following interphase. Previously, we reported a role for the DNA-binding protein heat shock factor (HSF2) in bookmarking the stress-inducible 70 000-Da heat shock protein (hsp70) gene. In this report, we have extended those studies and found that during mitosis, HSF2 is bound to the HSE promoter elements of other heat shock genes, including hsp90 and hsp27, as well as the proto-oncogene c-fos. The presence of HSF2 is important for expression of these genes because blocking HSF2 levels by RNA interference techniques leads to decreased levels of these proteins. These results suggest that HSF2 is important for constitutive as well as stress-inducible expression of HSE-containing genes.


Journal of Biological Chemistry | 2007

HSF1-TPR Interaction Facilitates Export of Stress-induced HSP70 mRNA

Hollie S. Skaggs; Hongyan Xing; Donald C. Wilkerson; Lynea A. Murphy; Yiling Hong; Christopher N. Mayhew; Kevin D. Sarge

Stress conditions inhibit mRNA export, but mRNAs encoding heat shock proteins continue to be efficiently exported from the nucleus during stress. How HSP mRNAs bypass this stress-associated export inhibition was not known. Here, we show that HSF1, the transcription factor that binds HSP promoters after stress to induce their transcription, interacts with the nuclear pore-associating TPR protein in a stress-responsive manner. TPR is brought into proximity of the HSP70 promoter after stress and preferentially associates with mRNAs transcribed from this promoter. Disruption of the HSF1-TPR interaction inhibits the export of mRNAs expressed from the HSP70 promoter, both endogenous HSP70 mRNA and a luciferase reporter mRNA. These results suggest that HSP mRNA export escapes stress inhibition via HSF1-mediated recruitment of the nuclear pore-associating protein TPR to HSP genes, thereby functionally connecting the first and last nuclear steps of the gene expression pathway, transcription and mRNA export.


Biology of Reproduction | 2008

Interaction of HSF1 and HSF2 with the Hspa1b Promoter in Mouse Epididymal Spermatozoa

Donald C. Wilkerson; Lynea A. Murphy; Kevin D. Sarge

Abstract The Hspa1b gene is one of the first genes expressed after fertilization, with expression observed in the male pronucleus as early as the one-cell stage of embryogenesis. This expression can occur in the absence of stress and is initiated during the minor zygotic genome activation. There is a significant reduction in the number of embryos developing to the blastocyte stage when HSPA1B levels are depleted, which supports the importance of this protein for embryonic viability. However, the mechanism responsible for allowing expression of Hspa1b during the minor zygotic genome activation (ZGA) is unknown. In this report, we investigated the role of HSF1 and HSF2 in bookmarking Hspa1b during late spermatogenesis. Western blot results show that both HSF1 and HSF2 are present in epididymal spermatozoa, and immunofluorescence analysis revealed that some of the HSF1 and HSF2 proteins in these cells overlap the 4′,6′-diamidino-2-phenylindole-stained DNA region. Results from chromatin immunoprecipitation assays showed that HSF1, HSF2, and SP1 are bound to the Hspa1b promoter in epididymal spermatozoa. Furthermore, we observed an increase in HSF2 binding to the Hspa1b promoter in late spermatids versus early spermatids, suggesting a likely period during spermatogenesis when transcription factor binding could occur. These results support a model in which the binding of HSF1, HSF2, and SP1 to the promoter of Hspa1b would allow the rapid formation of a transcription-competent state during the minor ZGA, thereby allowing Hspa1b expression.


Reproduction | 2009

RNA polymerase II interacts with the Hspa1b promoter in mouse epididymal spermatozoa.

Donald C. Wilkerson; Kevin D. Sarge

The Hspa1b (Hsp70.1) gene is one of the first genes expressed after fertilization, with expression occurring during the minor zygotic genome activation (ZGA) in the absence of stress. This expression can take place in the male pronucleus as early as the one-cell stage of embryogenesis. The importance of HSPA1B for embryonic viability during times of stress is supported by studies showing that depletion of this protein results in a significant reduction in embryos developing to the blastocyte stage. Recently, we have begun addressing the mechanism responsible for allowing expression of Hspa1b during the minor ZGA and found that heat shock transcription factor (HSF) 1 and 2 bind the Hspa1b promoter during late spermatogenesis. In this report, we have extended those studies using western blots and chromatin immunoprecipitation assays and found that RNA polymerase II (Pol II) is present in epididymal spermatozoa and bound to the Hspa1b promoter. These present results, in addition to our previous results, support a model in which the binding of HSF1, HSF2, SP1, and Pol II to the promoter of Hspa1b would allow the rapid formation of a transcription-competent state during the minor ZGA, thereby allowing Hspa1b expression.


Experimental Cell Research | 2008

PRC1 associates with the hsp70i promoter and interacts with HSF2 during mitosis

Lynea A. Murphy; Donald C. Wilkerson; Yiling Hong; Kevin D. Sarge

Mitosis is a series of events leading to division of a cell by the process known as cytokinesis. Protein regulating cytokinesis 1 (PRC1) is a CDK substrate that associates with the mitotic spindle and functions in microtubule bundling. Previous studies revealed that loss of PRC1 is associated with chromosomal mis-segregation and atypical chromosome alignment. HSF2 is a DNA binding protein that we previously showed bookmarks the hsp70i gene during mitosis, an epigenetic mechanism which allows the hsp70i gene to re-establish transcriptional competence early in G1. Another study demonstrated that HSF2-/- mouse embryonic fibroblasts (MEFs) exhibit increased numbers of multinucleated cells vs. wild-type MEFs. This suggests that HSF2 is important for proper cytokinesis, but the mechanism was unknown. Here we report the existence of a direct interaction between HSF2 and PRC1. HSF2 and PRC1 associate during mitosis and co-localize during this phase of the cell cycle. PRC1 does not interact with the related protein HSF1, indicating the specificity of the HSF2-PRC1 interaction. Intriguingly, PRC1 is associated with the hsp70i promoter during mitosis. These results provide a potential mechanistic basis for the defective cytokinesis phenotype exhibited by HSF2-/- cells, as well as suggest a potential role for PRC1 in HSF2-mediated gene bookmarking.


Science | 2005

Mechanism of hsp70i Gene Bookmarking

Hongyan Xing; Donald C. Wilkerson; Christopher N. Mayhew; Eric J. Lubert; Hollie S. Skaggs; Michael L. Goodson; Yiling Hong; Ok-Kyong Park-Sarge; Kevin D. Sarge


Journal of Biological Chemistry | 2004

Regulation and function of SUMO modification.

Roland S. Hilgarth; Lynea A. Murphy; Hollie S. Skaggs; Donald C. Wilkerson; Hongyan Xing; Kevin D. Sarge


Archive | 2007

HSF1-TPR Interaction Facilitates Export of Stress-induced

Hollie S. Skaggs; Hongyan Xing; Donald C. Wilkerson; Lynea A. Murphy; Yiling Hong; Christopher N. Mayhew; Kevin D. Sarge

Collaboration


Dive into the Donald C. Wilkerson's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yiling Hong

University of Kentucky

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rafael de Cabo

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Anna Csiszar

University of Oklahoma Health Sciences Center

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge