Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ying-Chun Ouyang is active.

Publication


Featured researches published by Ying-Chun Ouyang.


Developmental Dynamics | 2008

Trichostatin A (TSA) improves the development of rabbit‐rabbit intraspecies cloned embryos, but not rabbit‐human interspecies cloned embryos

Li-Hong Shi; Yi-Liang Miao; Ying-Chun Ouyang; Jun-Cheng Huang; Zi-Li Lei; Ji-Wen Yang; Zhiming Han; Xiang-Fen Song; Qing-Yuan Sun; Da-Yuan Chen

The interspecies somatic cell nuclear transfer (iSCNT) technique for therapeutic cloning gives great promise for treatment of many human diseases. However, the incomplete nuclear reprogramming and the low blastocyst rate of iSCNT are still big problems. Herein, we observed the effect of TSA on the development of rabbit–rabbit intraspecies and rabbit–human interspecies cloned embryos. After treatment with TSA for 6 hr during activation, we found that the blastocyst rate of rabbit–rabbit cloned embryos was more than two times higher than that of untreated embryos; however, the blastocyst rate of TSA‐treated rabbit–human interspecies cloned embryos decreased. We also found evident time‐dependent histone deacetylation‐reacetylation changes in rabbit–rabbit cloned embryos, but not in rabbit–human cloned embryos from fusion to 6 hr after activation. Our results suggest that TSA‐treatment does not improve blastocyst development of rabbit–human iSCNT embryos and that abnormal histone deacetylation‐reacetylation changes in iSCNT embryos may account for their poor blastocyst development. Developmental Dynamics 237:640–648, 2008.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Unique insights into maternal mitochondrial inheritance in mice

Shi-Ming Luo; Zhao-Jia Ge; Zhong-Wei Wang; Zong-Zhe Jiang; Zhen-Bo Wang; Ying-Chun Ouyang; Yi Hou; Heide Schatten; Qing-Yuan Sun

In animals, mtDNA is always transmitted through the female and this is termed “maternal inheritance.” Recently, autophagy was reported to be involved in maternal inheritance by elimination of paternal mitochondria and mtDNA in Caenorhabditis elegans; moreover, by immunofluorescence, P62 and LC3 proteins were also found to colocalize to sperm mitochondria after fertilization in mice. Thus, it has been speculated that autophagy may be an evolutionary conserved mechanism for paternal mitochondrial elimination. However, by using two transgenic mouse strains, one bearing GFP-labeled autophagosomes and the other bearing red fluorescent protein-labeled mitochondria, we demonstrated that autophagy did not participate in the postfertilization elimination of sperm mitochondria in mice. Although P62 and LC3 proteins congregated to sperm mitochondria immediately after fertilization, sperm mitochondria were not engulfed and ultimately degraded in lysosomes until P62 and LC3 proteins disengaged from sperm mitochondria. Instead, sperm mitochondria unevenly distributed in blastomeres during cleavage and persisted in several cells until the morula stages. Furthermore, by using single sperm mtDNA PCR, we observed that most motile sperm that had reached the oviduct for fertilization had eliminated their mtDNA, leaving only vacuolar mitochondria. However, if sperm with remaining mtDNA entered the zygote, mtDNA was not eliminated and could be detected in newborn mice. Based on these results, we conclude that, in mice, maternal inheritance of mtDNA is not an active process of sperm mitochondrial and mtDNA elimination achieved through autophagy in early embryos, but may be a passive process as a result of prefertilization sperm mtDNA elimination and uneven mitochondrial distribution in embryos.


Cell Cycle | 2010

BubR1 is a spindle assembly checkpoint protein regulating meiotic cell cycle progression of mouse oocyte

Liang Wei; Xing-Wei Liang; Qing-Hua Zhang; Mo Li; Ju Yuan; Sen Li; Shao-Chen Sun; Ying-Chun Ouyang; Heide Schatten; Qing-Yuan Sun

BubR1 (Bub1-related kinase or MAD3/Bub1b) is an essential component of the spindle assembly checkpoint (SAC) and plays an important role in kinetochore localization of other spindle checkpoint proteins in mitosis. But its roles in mammalian oocyte meiosis are unclear. In the present study, we examined the expression, localization and function of BubR1 during mouse oocyte meiotic maturation. The expression level of BubR1 increased progressively from germinal vesicle to metaphase II stages. Immunofluorescent analysis showed that BubR1 localized to kinetochores from the germinal vesicle breakdown to the prometaphase I stages, co-localizing with polo-like kinase 1, while it disappeared from the kinetochores at the metaphase I stage. Spindle disruption by nocodazole treatment caused relocation of BubR1 to kinetochores at metaphase I, anaphase I and metaphase II stages; spindle microtubules were disrupted by low temperature treatment in the BubR1-depleted oocytes in meiosis I, suggesting that BubR1 monitors kinetochore-microtubule (K-MT) attachments. Over-expression of exogenous BubR1 arrested oocyte meiosis maturation at the M I stage or earlier; in contrast, dominant-negative BubR1 and BubR1 depletion accelerated meiotic progression. In the BubR1-depleted oocytes, higher percentage of chromosome misalignment was observed and more oocytes overrode the M I stage arrest induced by low concentration of nocodazole. Our data suggest that BubR1 is a spindle assembly checkpoint protein regulating meiotic progression of oocytes.


Biology of Reproduction | 2007

Changes in Histone Acetylation During Postovulatory Aging of Mouse Oocyte

Jun-Cheng Huang; Li-Ying Yan; Zi-Li Lei; Yi-Liang Miao; Li-Hong Shi; Ji-Wen Yang; Qiang Wang; Ying-Chun Ouyang; Qing-Yuan Sun; Da-Yuan Chen

Abstract Because some animals and human beings potentially engage in sexual activity at any day of the menstrual cycle, this may cause fertilization of postovulatory aged oocytes, which result in decreased potential of embryo development and longevity of offspring. To investigate the involvement of histone acetylation in the function of postovulatory aging, we examined the changes of histone acetylation by immunostaining with specific antibodies against various acetylated lysines on histones H3 and H4. We found that the acetylation levels of lysine 14 on histone H3 and lysines 8 and 12 on histone H4 in mouse oocytes were gradually increased during in vivo and in vitro postovulatory aging. Furthermore, the acetylation levels on these sites were markedly decreased or increased when the process of postovulatory aging was artificially delayed or accelerated, respectively. These results indicated that the gradual acetylation on some lysines of histones H3 and H4 is one of the phenomena in the process of postovulatory aging. Moreover, raising the level of histone acetylation by trichostatin A can accelerate the progression of postovulatory aging, suggesting that alteration of the acetylation on histones H3 and H4 can affect the progression of postovulatory aging in mouse oocytes.


Journal of Animal Science | 2008

Trichostatin A and nuclear reprogramming of cloned rabbit embryos

Li-Hong Shi; Jun-Shu Ai; Ying-Chun Ouyang; Jun-Cheng Huang; Zi-Li Lei; Qiang Wang; Shen Yin; Zhiming Han; Qing-Yuan Sun; Da-Yuan Chen

To investigate the influence of histone deacetylases on nuclear reprogramming after nuclear transfer, we treated the cloned embryos with a histone deacetylase inhibitor, Trichostatin A (TSA). In the present study, global changes in acetylation of histone H3-lysine 14, histone H4-lysine 12, and histone H4-lysine 5 were studied in rabbit in vivo fertilized embryos, somatic cell nuclear transfer (SCNT) embryos, and TSA-treated SCNT embryos. From the pronuclear to the morula stage, the deacetylation-reacetylation changes in acetylation of histone H3-lysine 14 and histone H4-lysine 12 occurred in both fertilized embryos and TSA-treated cloned embryos; however, the distribution pattern in untreated cloned embryos failed to display such changes. More interesting, the signal of acetylation of histone H4-lysine 12 in cloned embryos was detected in both the inner cell mass and the trophectoderm, whereas TSA-treated cloned embryos showed the same staining pattern as fertilized embryos and the staining was limited to the inner cell mass. The histone acetylation pattern of TSA-treated SCNT embryos appeared to be more similar to that of normal embryos, indicating that TSA could improve nuclear reprogramming after nuclear transfer.


Development Growth & Differentiation | 2008

Mitochondrial behavior during oogenesis in zebrafish: A confocal microscopy analysis

Yong-Zhong Zhang; Ying-Chun Ouyang; Yi Hou; Heide Schatten; Da-Yuan Chen; Qing-Yuan Sun

The behavior of mitochondria during early oogenesis remains largely unknown in zebrafish. We used three mitochondrial probes (Mito Tracker Red CMXRos, Mito Tracker Green FM, and JC‐1) to stain early zebrafish oocyte mitochondria, and confocal microscopy to analyze mitochondrial aggregation and distribution. By using fluorescence recovery after photobleaching (FRAP), we traced mitochondrial movement. The microtubule assembly inhibitor nocodazole and microfilament inhibitor cytochalasin B (CB) were used to analyze the role of microtubules and microfilaments on mitochondrial movement. By using the dual emission probe, JC‐1, and oxidative phosphorylation uncoupler, carbonyl cyanide 4‐(trifluoromethoxy) phenylhydrazone (FCCP), we determined the distribution of active and inactive (low‐active) mitochondria. Green/red fluorescence ratios of different sublocations in different oocyte groups stained by JC‐1 were detected in merged (green and red) images. Our results showed that mitochondria exhibited a unique distribution pattern in early zebrafish oocytes. They tended to aggregate into large clusters in early stage I oocytes, but in a threadlike state in latter stage I oocytes. We detected a lower density mitochondrial area and a higher density mitochondrial area on opposite sides of the germinal vesicle. The green/red fluorescence ratios in different sublocations in normal oocytes were about 1:1. This implies that active mitochondria were distributed in all sublocations. FCCP treatment caused significant increases in the ratios. CB and nocodazole treatment caused an increase of the ratios in clusters and mitochondrial cloud, but not in dispersed areas. Mitochondria in different sublocations underwent fast dynamic movement. Inhibition or disruption of microtubules or microfilaments resulted in even faster mitochondrial free movement.


Biology of Reproduction | 2008

BRCA1 Is Required for Meiotic Spindle Assembly and Spindle Assembly Checkpoint Activation in Mouse Oocytes

Bo Xiong; Sen Li; Jun-Shu Ai; Shen Yin; Ying-Chun Ouyang; Shao-Chen Sun; Da-Yuan Chen; Qing-Yuan Sun

Abstract BRCA1 as a tumor suppressor has been widely investigated in mitosis, but its functions in meiosis are unclear. In the present study, we examined the expression, localization, and function of BRCA1 during mouse oocyte meiotic maturation. We found that expression level of BRCA1 was increased progressively from germinal vesicle to metaphase I stage, and then remained stable until metaphase II stage. Immunofluorescent analysis showed that BRCA1 was localized to the spindle poles at metaphase I and metaphase II stages, colocalizing with centrosomal protein gamma-tubulin. Taxol treatment resulted in the presence of BRCA1 onto the spindle microtubule fibers, whereas nocodazole treatment induced the localization of BRCA1 onto the chromosomes. Depletion of BRCA1 by both antibody injection and siRNA injection caused severely impaired spindles and misaligned chromosomes. Furthermore, BRCA1-depleted oocytes could not arrest at the metaphase I in the presence of low-dose nocodazole, suggesting that the spindle checkpoint is defective. Also, in BRCA1-depleted oocytes, gamma-tubulin dissociated from spindle poles and MAD2L1 failed to rebind to the kinetochores when exposed to nocodazole at metaphase I stage. Collectively, these data indicate that BRCA1 regulates not only meiotic spindle assembly, but also spindle assembly checkpoint, implying a link between BRCA1 deficiency and aneuploid embryos.


PLOS ONE | 2011

Spindle Assembly Checkpoint Regulates Mitotic Cell Cycle Progression during Preimplantation Embryo Development

Yanchang Wei; Saima Multi; Cai-Rong Yang; Jun-Yu Ma; Qing Hua Zhang; Zhen Bo Wang; Mo Li; Liang Wei; Zhao Jia Ge; Chun Hui Zhang; Ying-Chun Ouyang; Yi Hou; Heide Schatten; Qing-Yuan Sun

Errors in chromosome segregation or distribution may result in aneuploid embryo formation, which causes implantation failure, spontaneous abortion, genetic diseases, or embryo death. Embryonic aneuploidy occurs when chromosome aberrations are present in gametes or early embryos. To date, it is still unclear whether the spindle assembly checkpoint (SAC) is required for the regulation of mitotic cell cycle progression to ensure mitotic fidelity during preimplantation development. In this study, using overexpression and RNA interference (RNAi) approaches, we analyzed the role of SAC components (Bub3, BubR1 and Mad2) in mouse preimplantation embryos. Our data showed that overexpressed SAC components inhibited metaphase-anaphase transition by preventing sister chromatid segregation. Deletion of SAC components by RNAi accelerated the metaphase-anaphase transition during the first cleavage and caused micronuclei formation, chromosome misalignment and aneuploidy, which caused decreased implantation and delayed development. Furthermore, in the presence of the spindle-depolymerizing drug nocodazole, SAC depleted embryos failed to arrest at metaphase. Our results suggest that SAC is essential for the regulation of mitotic cell cycle progression in cleavage stage mouse embryos.


Cell Cycle | 2013

The effects of DNA double-strand breaks on mouse oocyte meiotic maturation

Jun-Yu Ma; Ying-Chun Ouyang; Zhong-Wei Wang; Zhen Wang; Zong-Zhe Jiang; Shi-Ming Luo; Yi Hou; Zhonghua Liu; Heide Schatten; Qing-Yuan Sun

Both endogenous and exogenous factors can induce DNA double-strand breaks (DSBs) in oocytes, which is a potential risk for human-assisted reproductive technology as well as animal nuclear transfer. Here we used bleomycin (BLM) and laser micro-beam dissection (LMD) to induce DNA DSBs in germinal vesicle (GV) stage oocytes and compared the germinal vesicle breakdown (GVBD) rates and first polar body extrusion (PBE) rates between DNA DSB oocytes and untreated oocytes. Employing live cell imaging and immunofluorescence labeling, we observed the dynamics of DNA fragments during oocyte maturation. We also determined the cyclin B1 expression pattern in oocytes to analyze spindle assembly checkpoint (SAC) activity in DNA DSB oocytes. We used parthenogenetic activation to determine if the DNA DSB oocytes could be activated. As a result, we found that the BLM- or LMD-induced DSB oocytes showed lower GVBD rates and took a longer time to undergo GVBD compared with untreated oocytes. PBE was also delayed in DSB oocytes, but once GVBD had occurred, PBE was not affected, even in oocytes with severe DSBs. Compared with control oocytes, the DSB oocytes showed higher SAC activity, as indicated by less Ccnb1-GFP degradation during metaphase I to anaphase I transition. Parthenogenetic activation could activate the metaphase to interphase transition in the DNA DSB mature oocytes, but many oocytes contained multiple pronuclei or numerous micronuclei. These data suggest that DNA damage inhibits or delays the G2/M transition, but once GVBD occurs, DNA-damaged oocytes can complete chromosome separation and polar body extrusion even under a higher SAC activity, causing the formation of numerous micronuclei in early embryos.


Nature Communications | 2014

The subcortical maternal complex controls symmetric division of mouse zygotes by regulating F-actin dynamics

Yu XL(余西龙); Zhaohong Yi; Zheng Gao; Dandan Qin; Yanhua Zhai; Xue Chen; Ying-Chun Ouyang; Zhen-Bo Wang; Ping Zheng; Min-Sheng Zhu; Haibin Wang; Qing-Yuan Sun; Jurrien Dean; Lei Li

Maternal effect genes play critical roles in early embryogenesis of model organisms where they have been intensively investigated. However, their molecular function in mammals remains largely unknown. Recently, we identified a subcortical maternal complex (SCMC) that contains four proteins encoded by maternal effect genes (Mater, Filia, Floped and Tle6). Here we report that TLE6, similar to FLOPED and MATER, stabilizes the SCMC and is necessary for cleavage beyond the two-cell stage of development. We document that the SCMC is required for formation of the cytoplasmic F-actin meshwork that controls the central position of the spindle and ensures symmetric division of mouse zygotes. We further demonstrate that the SCMC controls formation of the actin cytoskeleton specifically via Cofilin, a key regulator of F-actin assembly. Our results provide molecular insight into the physiological function of TLE6, its interaction with the SCMC and their roles in the symmetric division of the zygote in early mouse development.

Collaboration


Dive into the Ying-Chun Ouyang's collaboration.

Top Co-Authors

Avatar

Qing-Yuan Sun

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Yi Hou

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Da-Yuan Chen

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Zhen-Bo Wang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Shu-Tao Qi

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Zi-Li Lei

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Li-Hong Shi

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Jun-Cheng Huang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Lei Guo

Chinese Academy of Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge