Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Zhen-Bo Wang is active.

Publication


Featured researches published by Zhen-Bo Wang.


PLOS ONE | 2011

Arp2/3 Complex Regulates Asymmetric Division and Cytokinesis in Mouse Oocytes

Shao-Chen Sun; Zhen-Bo Wang; Yong-Nan Xu; Seung-Eun Lee; Xiang-Shun Cui; Nam-Hyung Kim

Mammalian oocyte meiotic maturation involves oocyte polarization and a unique asymmetric division, but until now, the underlying mechanisms have been poorly understood. Arp2/3 complex has been shown to regulate actin nucleation and is widely involved in a diverse range of processes such as cell locomotion, phagocytosis and the establishment of cell polarity. Whether Arp2/3 complex participates in oocyte polarization and asymmetric division is unknown. The present study investigated the expression and functions of Arp2/3 complex during mouse oocyte meiotic maturation. Immunofluorescent staining showed that the Arp2/3 complex was restricted to the cortex, with a thickened cap above the meiotic apparatus, and that this localization pattern was depended on actin. Disruption of Arp2/3 complex by a newly-found specific inhibitor CK666, as well as by Arpc2 and Arpc3 RNAi, resulted in a range of effects. These included the failure of asymmetric division, spindle migration, and the formation and completion of oocyte cytokinesis. The formation of the actin cap and cortical granule-free domain (CGFD) was also disrupted, which further confirmed the disruption of spindle migration. Our data suggest that the Arp2/3 complex probably regulates oocyte polarization through its effect on spindle migration, asymmetric division and cytokinesis during mouse oocyte meiotic maturation.


PLOS ONE | 2009

Bub3 Is a Spindle Assembly Checkpoint Protein Regulating Chromosome Segregation during Mouse Oocyte Meiosis

Mo Li; Sen Li; Ju Yuan; Zhen-Bo Wang; Shao-Chen Sun; Heide Schatten; Qing-Yuan Sun

In mitosis, the spindle assembly checkpoint (SAC) prevents anaphase onset until all chromosomes have been attached to the spindle microtubules and aligned correctly at the equatorial metaphase plate. The major checkpoint proteins in mitosis consist of mitotic arrest-deficient (Mad)1–3, budding uninhibited by benzimidazole (Bub)1, Bub3, and monopolar spindle 1(Mps1). During meiosis, for the formation of a haploid gamete, two consecutive rounds of chromosome segregation occur with only one round of DNA replication. To pull homologous chromosomes to opposite spindle poles during meiosis I, both sister kinetochores of a homologue must face toward the same pole which is very different from mitosis and meiosis II. As a core member of checkpoint proteins, the individual role of Bub3 in mammalian oocyte meiosis is unclear. In this study, using overexpression and RNA interference (RNAi) approaches, we analyzed the role of Bub3 in mouse oocyte meiosis. Our data showed that overexpressed Bub3 inhibited meiotic metaphase-anaphase transition by preventing homologous chromosome and sister chromatid segregations in meiosis I and II, respectively. Misaligned chromosomes, abnormal polar body and double polar bodies were observed in Bub3 knock-down oocytes, causing aneuploidy. Furthermore, through cold treatment combined with Bub3 overexpression, we found that overexpressed Bub3 affected the attachments of microtubules and kinetochores during metaphase-anaphase transition. We propose that as a member of SAC, Bub3 is required for regulation of both meiosis I and II, and is potentially involved in kinetochore-microtubule attachment in mammalian oocytes.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Unique insights into maternal mitochondrial inheritance in mice

Shi-Ming Luo; Zhao-Jia Ge; Zhong-Wei Wang; Zong-Zhe Jiang; Zhen-Bo Wang; Ying-Chun Ouyang; Yi Hou; Heide Schatten; Qing-Yuan Sun

In animals, mtDNA is always transmitted through the female and this is termed “maternal inheritance.” Recently, autophagy was reported to be involved in maternal inheritance by elimination of paternal mitochondria and mtDNA in Caenorhabditis elegans; moreover, by immunofluorescence, P62 and LC3 proteins were also found to colocalize to sperm mitochondria after fertilization in mice. Thus, it has been speculated that autophagy may be an evolutionary conserved mechanism for paternal mitochondrial elimination. However, by using two transgenic mouse strains, one bearing GFP-labeled autophagosomes and the other bearing red fluorescent protein-labeled mitochondria, we demonstrated that autophagy did not participate in the postfertilization elimination of sperm mitochondria in mice. Although P62 and LC3 proteins congregated to sperm mitochondria immediately after fertilization, sperm mitochondria were not engulfed and ultimately degraded in lysosomes until P62 and LC3 proteins disengaged from sperm mitochondria. Instead, sperm mitochondria unevenly distributed in blastomeres during cleavage and persisted in several cells until the morula stages. Furthermore, by using single sperm mtDNA PCR, we observed that most motile sperm that had reached the oviduct for fertilization had eliminated their mtDNA, leaving only vacuolar mitochondria. However, if sperm with remaining mtDNA entered the zygote, mtDNA was not eliminated and could be detected in newborn mice. Based on these results, we conclude that, in mice, maternal inheritance of mtDNA is not an active process of sperm mitochondrial and mtDNA elimination achieved through autophagy in early embryos, but may be a passive process as a result of prefertilization sperm mtDNA elimination and uneven mitochondrial distribution in embryos.


Human Reproduction | 2012

Maternal insulin resistance causes oxidative stress and mitochondrial dysfunction in mouse oocytes

Xiang-Hong Ou; Sen Li; Zhen-Bo Wang; Man-Yu Li; Song Quan; Fu-Qi Xing; Lei Guo; Shi-Bin Chao; Zi-Jiang Chen; Xing-Wei Liang; Yi Hou; Heide Schatten; Qing-Yuan Sun

BACKGROUND Insulin resistance (IR) and hyperinsulinemia compromise fertility in females and are well-recognized characteristics of anovulatory women with polycystic ovary syndrome. Patients with IR and hyperinsulinemia undergoing ovarian stimulation for IVF are at increased risks of impaired oocyte developmental competence, implantation failure and pregnancy loss. However, the precise underlying mechanism remains unknown. METHODS We investigated how IR impairs oocyte quality and early embryonic development by an insulin-resistant mouse model. Oocyte quality, fertilization and embryonic development were analyzed. Furthermore, oxidant stress products and mitochondrial function were evaluated by quantitative real-time PCR and immunofluorescence. RESULTS An imbalance between oxidants and antioxidants revealed by increased concentrations of reactive oxygen species, and a decreased concentration of glutathione (GSH) and a decreased GSH/GSSG ratio resulted in oxidative stress (OS) and impaired mitochondrial function in germinal vesicle (GV) and metaphase II (MII) oocytes of insulin-resistant mice. MII oocytes displayed a decrease in the ATP content and the mitochondrial DNA (mtDNA) copy number. In contrast, GV oocytes were characterized by a high ATP content concomitant with increased clustering of mitochondria and a high inner mitochondrial membrane potential. GV oocytes from insulin-resistant mice showed early stage apoptosis, and fewer MII oocytes could be retrieved from these mice and were of poor quality associated with decreased fertilization and an arrest of embryo development with increased fragmentation. Abnormal spindles and misaligned chromosomes of MII oocyte were significantly increased in IR and hyperinsulinemia mice compared with the control mice. CONCLUSIONS IR contributes to OS and disrupts mitochondrial function in mouse oocytes. This may impair the accurate transmission of mtDNA from one generation to the next. Therefore, our results suggest that OS and mitochondrial dysfunction are responsible for poor oocyte quality of insulin-resistant mice, and may provide novel targets to improve low fertility in females with IR.


Reproductive Biology and Endocrinology | 2009

A novel variant of ER-alpha, ER-alpha36 mediates testosterone-stimulated ERK and Akt activation in endometrial cancer Hec1A cells.

Sheng-Li Lin; Liying Yan; Xing-Wei Liang; Zhen-Bo Wang; Zhao-Yi Wang; Jie Qiao; Heide Schatten; Qing-Yuan Sun

BackgroundEndometrial cancer is one of the most common gynecologic malignancies and its incidence has recently increased. Experimental and epidemiological data support that testosterone plays an important role in the pathogenesis of endometrial cancer, but the underlying mechanism has not been fully understood. Recently, we identified and cloned a variant of estrogen receptor (ER) alpha, ER-alpha36. The aim of the present study was to investigate the role of ER-alpha36 in testosterone carcinogenesis.MethodsThe cellular localization of ER-alpha36 was determined by immunofluorescence. Hec1A endometrial cancer cells (Hec1A/V) and Hec1A cells with siRNA knockdown of ER-alpha36 (Hec1A/RNAi) were treated with testosterone, ERK and Akt phosphorylation was assessed by Western blot analysis. Furthermore, the kinase inhibitors U0126 and LY294002 and the aromatase inhibitor letrozole were used to elucidate the pathway underlying testosterone-induced activities.ResultsImmunofluorescence shows that ER-alpha36 was localized on the plasma membrane of the both ER-alpha- and androgen receptor-negative endometrial cancer Hec1A cells. Testosterone induced ERK and Akt phosphorylation, which could be abrogated by ER-alpha 36 shRNA knockdown or the kinase inhibitors, U0126 and LY294002, and the aromatase inhibitor letrozole.ConclusionTestosterone induces ERK and Akt phosphorylation via the membrane-initiated signaling pathways mediated by ER-alpha36, suggesting a possible involvement of ER-alpha 36 in testosterone carcinogenesis.


PLOS ONE | 2010

ER-α36, a Novel Variant of ER-α, Mediates Estrogen-Stimulated Proliferation of Endometrial Carcinoma Cells via the PKCδ/ERK Pathway

Jing-Shan Tong; Qing-Hua Zhang; Zhen-Bo Wang; Sen Li; Cai-Rong Yang; Xueqi Fu; Yi Hou; Zhao-Yi Wang; Jun Sheng; Qing-Yuan Sun

Background Recently, a variant of ER-α, ER-α36 was identified and cloned. ER-α36 lacks intrinsic transcription activity and mainly mediates non-genomic estrogen signaling. The purpose of this study was to investigate the function and the underlying mechanisms of ER-α36 in growth regulation of endometrial Ishikawa cancer cells. Methods The cellular localization of ER-α36 and ER-α66 were determined by immunofluorescence in the Ishikawa cells. Ishikawa endometrial cancer control cells transfected with an empty expression vector, Ishikawa cells with shRNA knockdown of ER-α36 (Ishikawa/RNAiER36) and Ishikawa cells with shRNA knockdown of ER-α66 (Ishikawa/RNAiER66) were treated with E2 and E2-conjugated to bovine serum albumin (E2-BSA, membrane impermeable) in the absence and presence of different kinase inhibitors HBDDE, bisindolylmaleimide, rottlerin, H89 and U0126. The phosphorylation levels of signaling molecules and cyclin D1/cdk4 expression were examined with Western blot analysis and cell growth was monitored with the MTT assay. Results Immunofluorescence staining of Ishikawa cells demonstrated that ER-α36 was expressed mainly on the plasma membrane and in the cytoplasm, while ER-α66 was predominantly localized in the cell nucleus. Both E2 and E2-BSA rapidly activated PKCδ not PKCα in Ishikawa cells, which could be abrogated by ER-α36 shRNA expression. E2-and E2-BSA-induced ERK phosphorylation required ER-α36 and PKCδ. However, only E2 was able to induce Camp-dependent protein kinase A (PKA) phosphorylation. Furthermore, E2 enhances cyclin D1/cdk4 expression via ER-α36. Conclusion E2 activates the PKCδ/ERK pathway and enhances cyclin D1/cdk4 expression via the membrane-initiated signaling pathways mediated by ER-α36, suggesting a possible involvement of ER-α36 in E2-dependent growth-promoting effects in endometrial cancer cells.


Molecular Aspects of Medicine | 2014

The root of reduced fertility in aged women and possible therapentic options: Current status and future perspects

Jie Qiao; Zhen-Bo Wang; Huai-Liang Feng; Yi-Liang Miao; Qiang Wang; Yang Yu; Yanchang Wei; Jie Yan; Wei-Hua Wang; Wei Shen; Shao-Chen Sun; Heide Schatten; Qing-Yuan Sun

It is well known that maternal ageing not only causes increased spontaneous abortion and reduced fertility, but it is also a high genetic disease risk. Although assisted reproductive technologies (ARTs) have been widely used to treat infertility, the overall success is still low. The main reasons for age-related changes include reduced follicle number, compromised oocyte quality especially aneuploidy, altered reproductive endocrinology, and increased reproductive tract defect. Various approaches for improving or treating infertility in aged women including controlled ovarian hyperstimulation with intrauterine insemination (IUI), IVF/ICSI-ET, ovarian reserve testing, preimplantation genetic diagnosis and screening (PGD/PGS), oocyte selection and donation, oocyte and ovary tissue cryopreservation before ageing, miscarriage prevention, and caloric restriction are summarized in this review. Future potential reproductive techniques for infertile older women including oocyte and zygote micromanipulations, derivation of oocytes from germ stem cells, ES cells, and iPS cells, as well as through bone marrow transplantation are discussed.


Nature Communications | 2014

The subcortical maternal complex controls symmetric division of mouse zygotes by regulating F-actin dynamics

Yu XL(余西龙); Zhaohong Yi; Zheng Gao; Dandan Qin; Yanhua Zhai; Xue Chen; Ying-Chun Ouyang; Zhen-Bo Wang; Ping Zheng; Min-Sheng Zhu; Haibin Wang; Qing-Yuan Sun; Jurrien Dean; Lei Li

Maternal effect genes play critical roles in early embryogenesis of model organisms where they have been intensively investigated. However, their molecular function in mammals remains largely unknown. Recently, we identified a subcortical maternal complex (SCMC) that contains four proteins encoded by maternal effect genes (Mater, Filia, Floped and Tle6). Here we report that TLE6, similar to FLOPED and MATER, stabilizes the SCMC and is necessary for cleavage beyond the two-cell stage of development. We document that the SCMC is required for formation of the cytoplasmic F-actin meshwork that controls the central position of the spindle and ensures symmetric division of mouse zygotes. We further demonstrate that the SCMC controls formation of the actin cytoskeleton specifically via Cofilin, a key regulator of F-actin assembly. Our results provide molecular insight into the physiological function of TLE6, its interaction with the SCMC and their roles in the symmetric division of the zygote in early mouse development.


Molecular Human Reproduction | 2011

The Small GTPase Cdc42 Promotes Membrane Protrusion during Polar Body Emission via ARP2-Nucleated Actin Polymerization

J. Leblanc; X. Zhang; D. McKee; Zhen-Bo Wang; R. Li; C. Ma; Quan-Hong Sun; X.J. Liu

Polar body emission is a specialized cell division throughout the animal kingdom, serving to reduce chromosome ploidy while preserving the egg cytoplasm. Critical to polar body emission are the asymmetric positioning of the meiotic spindle prior to anaphase, with one pole attached to the oocyte cortex, and the simultaneous membrane protrusion during subsequent cytokinesis. We have shown that, during Xenopus oocyte maturation, the small GTPase Cdc42 promotes membrane protrusion while a classical RhoA contractile ring forms and constricts at the base of the protrusion. We report here that treating oocytes with low concentrations of nocodazole diminished the size of metaphase I spindles and prevented polar body emission, and yet an active Cdc42 cap of correspondingly diminished size still developed, on time, atop of the spindle pole. Conversely, treating oocytes with low concentrations of taxol resulted in a spindle with multiple poles attached to the cortex, but still each of these poles were associated with activated cortical Cdc42 at the appropriate time. Therefore, the asymmetric positioning of the meiotic spindle with one pole anchored to the cortex is a prerequisite for Cdc42 activation. Furthermore, we demonstrated that the Cdc42-regulated F-actin nucleator ARP2/3 complex was similarly localized at the cortex of the protruding polar body membrane, suggesting that Cdc42 promotes membrane protrusion through an F-actin meshwork mechanism. Finally, we demonstrated that Cdc42 and RhoA formed similarly complementary activity zones during egg activation and that inhibition of Cdc42 prevented second polar body emission. Therefore, Cdc42 activation likely promotes membrane protrusion during polar body emission in widespread systems.


Cell Cycle | 2011

GM130, a cis-Golgi protein, regulates meiotic spindle assembly and asymmetric division in mouse oocyte

Chun-Hui Zhang; Zhen-Bo Wang; Song Quan; Xin Huang; Jing-Shan Tong; Jun-Yu Ma; Lei Guo; Yanchang Wei; Ying-Chun Ouyang; Yi Hou; Fu-Qi Xing; Qing-Yuan Sun

GM130, a cis-Golgi protein, plays key roles in various mitotic events, but its function in mammalian oocyte meiosis remains unknown. In this study, we found that GM130 was localized to the spindle poles at both metaphase I and metaphase II stages and associated with the midbody at telophase I stage. The association of GM130 with spindle poles was further confirmed by its colocalization with the centrosome-associated proteins, MEK1/2. By nocodazole treatment, we clarified that GM130 localization was consistently dependent on spindle assembly. Then we investigated the possible function of GM130 by specific morpholino microinjection. This treatment caused abnormal spindle formation, and decreased first polar body extrusion. Our results showed that knockdown of GM130 impaired the localization of MTOCs proteins γ-tubulin and Plk1. Using live cell imaging we observed that depletion of GM130 affected spindle migration and resulted in elongated spindle and large polar body extrusion. We further found that depletion of GM130 blocked p-MEK1/2 accumulation at the spindle poles. And, it was shown that GM130 detached from the spindle poles in oocytes treated with MEK specific inhibitor U0126. Taken together, our results suggested that GM130 regulates microtubule organization and might cooperate with the MAPK pathway to play roles in spindle organization, migration and asymmetric division during mouse oocyte maturation.

Collaboration


Dive into the Zhen-Bo Wang's collaboration.

Top Co-Authors

Avatar

Qing-Yuan Sun

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ying-Chun Ouyang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Yi Hou

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Lei Guo

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Xue-Shan Ma

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Meng-Wen Hu

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Shu-Tao Qi

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Tie-Gang Meng

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Lin Huang

Chinese Academy of Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge